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“Because I’m stuck like this, my thoughts are crazy, perfidious tripe: anyone shoots

badly through a crooked blowpipe.

My painting is dead. Defend it for me, Giovanni, protect my honour. I am not in the

right place—I am not a painter.”

Talking about the Sistine Chapel,

Michelangelo, To Giovanni da Pistoia

“It’s like everyone tells a story about themselves inside their own head. Always. All

the time. That story makes you what you are. We build ourselves out of that story”

Patrick Rothfuss, The Name of the Wind



Abstract

Symplectic reduction [33] is a well-studied construction that takes advantage of sym-

metries on symplectic manifolds to reduce their dimension. This procedure is not

always well-behaved, and the construction for non-free actions or over singular val-

ues results in singular symplectic structures, such as orbifolds [27], or more generally,

stratified symplectic spaces [42]. This reduction procedure has been generalized and

studied over other multiple classes of spaces (see [9, 11, 24, 32, 35, 36]). In this text

we first review the singular generalization of the Marsden-Weinstein reduction [33] by

Sjamaar-Lerman [42], and we later study the reduction of the cotangent bundle of a

Lie group G by subgroups of its natural G × G-action. Moreover, we take a look at

the state of the symplectic reduction on bm−symplectic manifolds [35], where the sin-

gular reduction is yet to be studied, and give an approach to generalize the singular

construction for this category of spaces.

Keywords: Symplectic Geometry, Symplectic Reduction, Singular Geom-

etry, b-Symplectic Geometry, Lie Groups, Hamiltonian Actions, Singular

Symplectic Manifolds, Marsden-Weinstein Reduction.
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Resum

La reducció simplèctica [33] és una construcció àmpliament reconeguda que aprofita

les simetries d’una varietat simplèctica per reduir la seva dimensió. Aquest procés

no té sempre un bon comportament, i la construcció dona com a resultat estructures

simplèctiques singulars per a accions no lliures o en valors singulars. Aquestes poden ser

orbifolds [27] en el cas d’accions localment lliures, o més generalment espais simplèctics

estratificats [42]. Aquest process the reducció ha estat estudiat i generalitzat per

multituds d’altres classes d’espais (vegeu [9, 11, 24, 32, 35, 36]). En aquest text primer
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revisarem la generalització de la reducció de Marsden-Weinstein [33], realitzada per

Sjamaar-Lerman [42], i posteriorment estudiarem el cas particular de la reducció del

fibrat cotangent d’un grup de Lie G per subgrups de l’acció natural de G×G. També

repassarem l’estat actual de la reducció simplèctica sobre bm-varietats simplèctiques

[35], on la reducció singular no ha estat estudiada encara, i proposem un procediment

per a generalitzar la construcció singular a aquesta categoria d’espais.

Paraules clau: Geometria Simplèctica, Reducció Simplèctica, Geometria

Singular, Geometria b-simplèctica, Grups de Lie, Accions Hamiltonianes,

Varietats Simplèctiques Singulars, Reducció de Marsden-Weinstein Codi
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Resumen

La reducción simpléctica es una construcción ampliamente conocida que aprovecha

las simetŕıas de una variedad simpléctica para reducir su dimensión. Este proceso

no siempre tiene un buen comportamiento, y la construcción tiene como resultado

estructuras simplécticas singulares para acciones no libres o en valores singulares. Estas

puedes ser orbifolds [27] en el caso de acciones localmente libres, o más generalmente

espacios simplécticos estratificados. Este proceso de reducción ha sido estudiado y

generalizado para multitud de otras clases de espacios (véase [9, 11, 24, 32, 35, 36]).

En este texto primero revisamos la generalización de la reducción de Marsden-Weinstein

[33], realizada por Sjamaar-Lerman [42], y posteriormente estudiamos el caso particular

de la reducción del fibrado cotangente de un grupo de Lie G por subgrupos de la acción

natural de G × G. También repasamos el estado actual de la reducción simpléctica

sobre bm-variedades simplécticas [35], donde la reducción singular no ha sido estudiada

todav́ıa, y proponemos un procedimiento para generalizar la construcción singular a

esta categoŕıa de espacios.

Palabras clave: Geometŕıa Simpléctica, Reducción Simpléctica, Geometŕıa

Singular, Geometŕıa b-Simpléctica, Grupos de Lie, Acciones Hamiltoni-

anas, Variedades Simplécticas Singulares, Reducción de Marsden-Weinstein
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Introduction

Symplectic geometry lies at the intersection of Mathematics and Physics. It is the

language of Classical Mechanics, and can even be generalized to quantum models. At

its core lies the idea that the evolution of a physical system—be it a planet tracing

its orbit around the sun, or a pendulum swinging back and forth—can be encoded

geometrically through the interaction of position and momentum. The space formed

by these two coordinates combined forms what is known as phase space: the stage on

which dynamics unfold. The structure that governs this space is called a symplectic

form, which will help us identify the trajectories followed by a particle with a given

energy function.

Moreover, symmetries are the passion of physicists. They are what makes complex

problems simple, what makes quantities be conserved. Isotropy, a concept in physics

that states the property where all directions in space can be considered equal, that there

are no privileged directions, is a basic fact of our space-time that no one, nowadays,

would dare to challenge. These symmetries allow us to reduce, to erase directions and

degrees of freedom, obtaining simpler systems and enabling us to do calculations. This

procedure is in mathematics formalized and generalized through symplectic reduction.

Marsden-Weinstein (MW) reduction is the foundational result in this theory. It

tells us precisely how, given a manifold with a nice symmetry, a Hamiltonian action,

endowed with a moment map, a generalization of physical momenta, can be simplified

by the symmetry. This reduction results in another symplectic manifold, where an

equal quantity of position and momentum coordinates have been removed, reducing the

dimension of the phase space by twice the dimensions of the acting group. However, this

theory has gaps, as only free actions—symmetries that never leave fixed points—yield

a well-behaved reduced space.

In those cases, the Sjamaar-Lerman (SL) reduction tells us that the space is no

longer a manifold. It is a stratified space that can be divided into symplectic manifolds

that are nicely glued together. In particular, we will be interested in looking at this
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construction over the phase space of symmetry groups themselves, which, of course,

are spaces with rich symmetries that can be studied with this reduction.

Moreover, multiple more singular structures exist in symplectic geometry, and we will

focus on a particular kind, bm-manifolds. They are a generalization of manifolds with

boundary, and as a lot of other categories of spaces, they have their own reduction

theory. However, this theory is only limited to the MW reduction, and we will be

interested in how a SL theory can be adapted to such kinds of spaces.
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Chapter 1

Preliminaries

1.0 Notation commentaries

To begin, we clarify some conventions and terminology used throughout this text:

• The terms differentiable, smooth, and C∞ are used interchangeably.

• The expressions moment map, momentum map, and momentum application are

used interchangeably.

• The symbol ∼= will denote an isomorphism between spaces in their respective

categories.

• The symbol ≃ will denote an homeomorphism of topological spaces.

1.1 Smooth Manifolds

In this section we will recall some important definitions regarding smooth manifolds.

These definitions will follow from [29] and [44].

Definition 1.1. A (smooth) fibre bundle is a space that locally is a product space.

Formally, it is a structure (E,B, π, F ), with E,B, F (smooth) manifolds, and π :

E −→ B a (surjective submersion) continuous surjective map. For a point x ∈ B,

there is an open neighbourhood U of x such that the space π−1(U) is (diffeomorphic)

3



homeomorphic via ϕ to U × F , in such a way that the diagram

π−1(U) U × F

U

ϕ

π
πU

commutes. B is called the base space, E the total space, and F is the fibre. The map

π is the bundle projection.

The prototypical example is the vector bundle of a smooth manifold.

Definition 1.2. Let M and X be smooth manifolds. A map i : X −→ M is called an

immersion if dip : TpX −→ Ti(p)M is injective for all points p ∈ X. An embedding is

an immersion which is an homeomorphism onto its image, and a closed embedding

is a proper injective immersion. In particular, a closed embedding is an embedding

whose image i(X) is closed on M .

Definition 1.3. A manifold X is called a submanifold of M if its inclusion function

is a closed embedding.

1.2 Symplectic Manifolds

For this section we will follow [3], [12], and [29]. We will introduce symplectic manifolds,

other related definitions, and provide examples. We will also explain one of the main

theorems in symplectic geometry, Darboux’s theorem, which provides a local normal

form for symplectic geometry.

Definition 1.4. A symplectic manifold (M,ω) is a manifold with a closed non-degenerate

2-form ω ∈ Ω2(M).

Definition 1.5. A smooth map F : M −→M ′ between symplectic manifolds (M,ω),

(M ′, ω′) is symplectic, or a morphism of symplectic manifolds, if F ∗ω′ = ω.

If F is a symplectic diffeomorphism, then F−1 is also symplectic and F is called a

symplectomorphism.

We now present some classical examples of symplectic manifolds.

Example 1.6. The cotangent bundle of a manifoldM is a symplectic manifold (T ∗M,ω)

with the 2-form ω = −dθ, where θ is the tautological one form of the cotangent bundle.
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Example 1.7. The Euclidean space Rn × Rn with coordinates {xi, yi}1≤i≤n is sym-

plectic with the symplectic form ω =
∑n

i=1 dxi ∧ dyi.

Since ω is non-degenerate, a symplectic manifold M must be even-dimensional. How-

ever, this does not mean that every even-dimensional manifold can be given a sym-

plectic form. For example, M = S4 has no symplectic forms. In addition, the non-

degenerate nature of ω also implies that ωn ̸= 0 is a volume form, and therefore M

is orientable. As we will now see, the dimension of a symplectic manifold is its only

local invariant, which implies that all symplectic manifolds of the same dimension are

locally the symplectomorphic.

Theorem 1.8 (Darboux). Let (M2n, ω) be a symplectic manifold. For all points p ∈M

there exists an open neighbourhood U ⊆ M , with local coordinates {xi, yi}1≤i≤n, in

which the symplectic form can be written as

ω|U =
n∑

i=1

dxi ∧ dyi.

Definition 1.9. For a smooth function f , we define its Hamiltonian vector field

as a unique vector field such that

ιXf
ω = df.

This vector field can be seen as the velocity that a particle with Hamiltonian f , that

is, a particle with energy given by the function f , would have at each of the points of

the manifold.

Definition 1.10. Let (M2n, ω) be a symplectic manifold and let X ↪→ M be a sub-

manifold. For each point p ∈ X, define the symplectic complement of TpX in TpM

by

(TpX)ω = {v ∈ TpM | ω(v, w) = 0 for all w ∈ TpX}.

Then, the submanifold X is called isotropic if TpX ⊆ (TpX)ω for all p ∈, which is to

say,the symplectic form ω restricts to zero on N : ω|N = 0. In particular, it is called

Lagrangian if it is isotropic and dimX = n. X is called coisotropic if (TpX)ω ⊆ TpX

for all p ∈ X.
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1.3 Poisson Structures

Poisson manifolds are a generalization of symplectic manifolds, and arise naturally in

classical mechanics, giving a relation between observables and Hamiltonian flows. We

will follow [35], [45], and [18].

Definition 1.11. A Poisson bracket on a smooth manifold M is an R-bilinear map

{·, ·} : C∞(M)× C∞(M) −→ C∞(M). For f, g, h ∈ C∞(M), it satisfies

· Anti-symmetry

{f, g} = −{g, f},

· Leibniz rule

{f, g · h} = {f, g} · h+ g · {f, h},

· Jacobi identity:

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

A pair (M, {·, ·}) of a smooth manifold endowed with a Poisson bracket is called a

Poisson Manifold.

Definition 1.12. A smooth map F : M −→ N between Poisson manifolds (M, {·, ·}M),

(N, {·, ·}N) is a Poisson map if for f, g ∈ C∞(N)

F ∗{f, g}N = {F ∗f, F ∗g}M .

Example 1.13. For a symplectic manifold (M,ω), one can construct a Poisson bracket

as follows. For f, g ∈ C∞(M), let Xf , Xg be their corresponding Hamiltonian vector

fields. We can define {f, g} = ω(Xf , Xg). It can be proved that this bracket satisfies

the properties of the Poisson bracket.

However, the relation between symplectic and Poisson manifolds does not only go in

one direction. For a Poisson manifold, there exists a natural partition into regularly

immersed symplectic manifold, possibly of different dimension, which are called the

symplectic leaves [46].

Definition 1.14. Let (M, {·, ·}) be a Poisson manifold, and f ∈ C∞(M). As in

symplectic geometry, one can obtain a related vector field defined as

Xf = {f, ·}

6



called the Hamiltonian vector field associated with the Hamiltonian f .

For a symplectic manifold, it is easy to check that this definition of a Hamiltonian

vector field coincides with the definition in symplectic geometry.

These vector fields give the mechanics followed by a particle with Hamiltonian (en-

ergy) defined by f , analogous to the symplectic case. Moreover, the flow of the vector

field Xf is tangent to the symplectic leaves, and therefore it preserves them.

1.4 Lie Groups and Lie Algebras

In the study of symplectic reduction, Lie groups and their associated Lie algebras play

a central role. Symmetries in mechanics are encoded by smooth group actions, which

are described using Lie groups. The infinitesimal counterparts of these actions are

given by Lie algebras, which provide an algebraic framework for understanding the

structure of the symmetries. This section briefly reviews the essential concepts and

properties of Lie groups and Lie algebras, along with some of the standard examples,

while following [12], [8], [41], [14], and [7].

1.4.1 Lie groups and Classical Examples

Definition 1.15. A Lie group is a smooth manifold G that is also a group, in such

a way that the multiplication of the group µ : G × G −→ G and the inverse map

inv : G −→ G (the map sending g to g−1) are smooth maps. An homomorphism of

Lie groups is a differentiable group homomorphism between Lie groups.

We will now review some of the most common Lie groups.

Example 1.16. The complex circumference S1 ⊂ C is a Lie group acting on itself by

multiplication, as well as the torus Tn = (S1)
n

The classical example of Lie groups are the matrix groups.

Example 1.17. The group GL(n,R) of real n× n real matrices with non-zero deter-

minant, which can be seen as the set of linear automorphisms of an n-dimensional real

vector space, is a Lie group with matrix multiplication. Similarly, the group GL(n,C)
of n× n non-singular complex matrices is a Lie group.

This groups are the general linear groups. From them, we can get a variety of

subgroups:
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Example 1.18. The real singular linear group is the subgroup SL(n,R) of GL(n,R)
of matrices with determinant 1. The complex singular linear group is obtained analo-

gously.

These groups, however, are not compact. In GL(n) the determinant is not bounded,

and in SL(n) one can consider the matrices of the form diag(λ, 1, . . . , 1/λ) and its trace

(a continuous function) is not bounded.

In this text, we will be centred in compact groups. The compact matrix groups are:

Example 1.19. The orthogonal group is the group O(n) = {A ∈ GL(n,R) : AtA =

Id}. Similarly, the unitary group is the group U(n) = {A ∈ GL(n,C) : A∗A = Id},
where A∗ denotes the complex transpose of A. The group O(n) has two different con-

nected components, split by the value of the determinant ±1. The connected compo-

nent of the identity SO(n) = {A ∈ O(n) : det(A) = 1} is called the special orthogonal

group, which is a connected compact group. Similarly, one can define the special uni-

tary group as SU(n) = {A ∈ U(n) : det(A) = 1}. However, in this case it is not the

connected component of the identity as the group U(n) is itself connected.

Definition 1.20. The twisted product of two G-spaces X and Y , where G acts on

the right on X and on the left on Y , is the space X ×G Y = (X × Y )/G, where G acts

on X × Y by g(x, y) = (x · g−1, g · y).

Definition 1.21. For a Lie group G, we define the maximal torus T as the maximal

compact abelian subgroup of G. The rank of a Lie group is defined as the dimension of

its maximal torus. We define the Weyl group of G as the quotient W (G) = NG(T )/T ,

where NG(T ) is the normalizer of T in G. The Weyl group is a finite group, and it acts

on the maximal torus by conjugation.

Proposition 1.22. The maximal torus of a compact Lie group is unique up to conju-

gation. In particular, the rank of a compact Lie group is well defined, and the Weyl

group is well defined.

Example 1.23. The maximal torus of SO(n) is the group T n = {A ∈ SO(n) : AtA =

Id}, which is the group of diagonal matrices with ±1 in the diagonal. The maximal

torus of SU(n) is the group T n = {A ∈ SU(n) : A∗A = Id}, which is the group of

diagonal matrices with eiθ in the diagonal.

1.4.2 Lie algebras

Before continuing with the content in Lie groups, it is useful to first define the concept

of Lie algebras.
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Definition 1.24. A Lie algebra L is a vector space, bundled with a skew-symmetric

bilinear map, the Lie bracket (or commutator), written as [·, ·] : L × L −→ L which

satisfies the Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 ∀x, y, z ∈ L

Some examples of Lie algebras include:

Example 1.25. Any vector space V is a Lie algebra with bracket [u, v] = 0. This

algebra is called an abelian algebra.

Example 1.26. The classical matrix algebras gln(R) of n×n matrices, sln(R) of those
matrices with determinant 1, are some of the matrix Lie algebras, with commutator

[X, Y ] = XY − Y X.

The general example will be the Lie algebra of a Lie group, which we will define

shortly.

For every element x ∈ L, we can define the adjoint representation of L as the

linear map adx : L −→ L defined as

adx(y) = [x, y].

The adjoint representation is a Lie algebra homomorphism, and therefore it satisfies

that

ad[x,y] = adx ◦ ady − ady ◦ adx.

Definition 1.27. The Killing form of a Lie algebra L is the bilinear form defined as

K(x, y) = Tr(adx ◦ ady).

Definition 1.28. A Lie algebra L is called simple if it is non-abelian and has no non-

trivial ideals, where an ideal I of a Lie algebra L is defined as subalgebra such that

[I,L] ⊆ I.

A Lie algebra L is called semisimple if it is a direct sum of simple Lie algebras, and

L is called reductive if it is a direct sum of semisimple and abelian Lie algebras.

One can see that a Lie algebra L is semisimple if and only if its Killing form is

non-degenerate. This is a consequence of the fact that the adjoint representation is a

homomorphism, and therefore it preserves the structure of the algebra. Moreover, the

Killing form gives as a way to relate the dual space of the algebra with the algebra
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itself, as it gives a bilinear form on L∗ × L∗, which can be used to identify L with

its dual space. This is important in the study of representations of Lie algebras, as it

allows us to define a dual representation.

Definition 1.29. For a real Lie algebra L (a vector space over the real numbers), we

define the complexification of L as the complex vector space LC = L⊗R C with the

Lie bracket defined as

[x⊗ z, y ⊗ w] = [x, y]⊗ zw.

The complexification of a Lie algebra is a complex Lie algebra. It is a common

practice to work with complex Lie algebras, as they are easier to classify, as we will

see in 1.49. The process of complexification cannot be reversed, as different real Lie

algebras can have the same complexification. However, for all complex algebras, there

exists a unique compact form, which will be the Lie algebra of a compact Lie group.

Definition 1.30. A Cartan subalgebra t of a Lie algebra L is a maximal abelian

subalgebra t ⊆ L such that the adjoint representation adx is diagonalizable for all x ∈ t.

A Cartan subalgebra is called regular if it is self-normalizing, that is, if [t, t] = t.

The Cartan subalgebra is the equivalent concept of a maximal torus in a Lie group,

and as such, all Cartan subalgebras are conjugate to each other.

1.4.3 Lie groups and Lie algebras

Left invariant vector fields

For a Lie group G, we can consider its action on itself by left multiplication. For an

element g ∈ G, we define it as

Lg : G −→ G a 7−→ g · a.

Definition 1.31. A vector field X is called left-invariant if (Lg)∗X = X

The We can see that left-invariant vector fields are defined by their value at the

identity element of G, as one must have that (Lg)∗Xg−1 = Xe, so we have a map from

the tangent space at the identity to the set of left-invariant vector fields. This map

allows us to define a Lie bracket on TeG by taking [x, y] = LXY , where X and Y are

the left-invariant vector fields generated by x, y.

Definition 1.32. The Lie algebra g of a Lie group G is the tangent space at the

identity TeG with the induced Lie given on the left-invariant vector fields.
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Moreover, the left action induces a natural bundle isomorphism between the tangent

space of G and the product G×g, which is called the left trivialisation of the tangent

bundle. It can also be applied to the cotangent bundle, T ∗G ∼= G× g∗.

For each element g ∈ G, we define the function Φ : G −→ Aut(G) as Φg(a) = gag−1.

Definition 1.33. The adjoint representation of a Lie group G is the homomorphism

Ad : G −→ GL(g) defined as

Adg(X) = (dΦ(g))e

The dual of the adjoint representation is called the coadjoint representation, which

quite an important object. In particular, the study of coadjoint orbits is a important

topic, mainly due to the following theorem by Kostant-Souriau (see [3, §2.5], [8, §1.4]):

Theorem 1.34 (Konstant-Souriau). Let G be a Lie group with H1(g) = H2(g) = 0.

Then, the coadjoint orbits of G are symplectic manifolds. And there is a one to one

correspondence between G-orbits in g∗ and symplectic manifolds with a transitive G-

action.

This theorem can be used to identify the spaces T ∗(G/H) with the coadjoint orbits

of G, where H is a closed subgroup of G.

Exponential Map

A one parameter group of a Lie group G is a homomorphism of Lie groups φ :

R −→ G such that φ(0) = e. The correspondence φ 7−→ φ̇(0) gives a bijection between

the set of one-parameter groups and the Lie algebra g of G due to the existence of

solutions of ODEs, which allows us to define the exponential map:

Definition 1.35. The exponential map exp : g −→ G is the map

exp : g −→ G X 7−→ φX(1),

where φX is the unique one-parameter group such that φ̇X(0) = X. The map is

differentiable, and its differential at 0 is the identity map.

As the differential at 0 is the identity map, we can see that the exponential map

is a local diffeomorphism at the identity. However, it is not generally a global diffeo-

morphism. Nevertheless, for compact Lie groups it is surjective over the connected

component of the identity.
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Example 1.36. For matrix Lie groups, the exponential map is given by the usual

matrix exponential, which is defined as the series

exp(X) =
∞∑
n=0

Xn

n!
.

This series converges for all matrices, and it is a smooth map. The exponential map is

a local diffeomorphism at the identity.

Correspondence of Lie algebras and Lie groups

As we have seen, all Lie groups have an associated Lie algebra, taken as the tangent

space at the identity. There is also a correspondence in the other direction, as we can

construct a Lie group from a Lie algebra, although this process is not unique.

Theorem 1.37 (Lie’s third theorem). Let g be a finite-dimensional Lie algebra over

R. Then, there exists a unique simply connected Lie group G such that g is isomorphic

to the Lie algebra of G.

For any connected Lie group G, one can consider its universal covering group G̃,

which is a simply connected Lie group. The Lie algebra of G is naturally isomorphic

to the Lie algebra if G̃, as the covering map is a local diffeomorphism which induces

an isomorphism between the tangent spaces at the identity. Then, due to Lie’s third

theorem, any two connected Lie groups with the same Lie algebra have the same

universal covering.

Another important fact in the correspondence between Lie groups and Lie algebras

is that subgroups correspond to subalgebras, and vice versa.

Theorem 1.38. If G is a Lie group with Lie algebra g, and h is a Lie subalgebra of g,

then there exists a unique connected Lie subgroup H of G such that h is the Lie algebra

of H.

In general, the group H will be generated by the exp(h).

1.4.4 Root systems, Weyl groups and regular subalgebras

Definition 1.39. Let k be a compact form of g = kC, a complex semisimple Lie algebra.

Let t be a Cartan subalgebra of g. Then, the complex Lie algebra can be decomposed
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as

g = t
⊕
α∈Ψ

gα

where

gα = {X ∈ g : [H,X] = α(H)X ∀T ∈ t},

and

Φ = {α ∈ t∗\{0} : gα{0}}.

Each element α ∈ Φ ⊂ t∗ is called a root, and the corresponding space gα is called

a root space. The set of roots Φ is called the root system of g with respect to t, or

equivalently, of k with respect to t ∩ k.

Proposition 1.40. A root system Φ satisfies that:

• If α ∈ Φ, then λα ∈ Φ only for λ = ±1,

• If α, β ∈ Φ, then ⟨α, β⟩ := 2[α,β]
[α,α]

∈ Z

• The set Φ is closed under reflections under the hyperplane normal to α, α ∈ Φ.

Definition 1.41. The Weyl group of g with respect to t is the group W (g, t) generated

by reflections on the normal hyperplanes to the roots.

Definition 1.42. A root subsystem Ψ of a root system Φ is a subset Ψ ⊆ Φ that

satisfies that for any α, β ∈ Ψ, α + β ∈ Φ, −α ∈ Ψ and α + β ∈ Ψ. Equivalently, Ψ is

a root subsystem if (spanZΨ) ∩ Φ = Ψ.

A root subsystem is always a root system itself. We use the notation Ψ ≤ Φ to

denote that Ψ is a root subsystem of Φ, which gives a partial order on the set of root

subsystems.

Root subsystems are closely related to regular subalgebras.

Definition 1.43. A subalgebra h of g is called regular if there exist a Cartan subalgebra

t of g such that [t, h] ⊆ h.

This notion was studied by Dynkin [13], who introduced the terminology. We denote

the set of conjugacy classes of regular semisimple subalgebras of g by Cg. As all Cartan
subalgebras are conjugate, all elements of Cg have a representative regular with respect

to a fixed t.
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Proposition 1.44. The set of semisimple subalgebras of g that are regular with respect

to t are in a one-to-one correspondence with the set of roots subsystems of Φ. The

correspondence, for Ψ ≤ Φ is

gΨ = tΨ
⊕
α∈Ψ

gα (1.1)

where tΨ is the span of the coroots hα for α ∈ Ψ.

In particular, this equivalence also gives an equivalence between semisimple subalge-

bras of k that are regular with respect to tk = t ∩ k, yielding kΨ = gΨ ∩ k.

Definition 1.45. A bilinear form in g is called admissible if it is a non-degenerate

symmetric invariant bilinear form on g which is positive definite on the real span of

the coroots. Equivalently, a bilinear form is admissible if its restriction to all compact

real forms are negative definite. For example, the Killing form is admissible.

Proposition 1.46. Any admissible bilinear form on g (k) remains admissible on gΨ
(kΨ). Also, tΨ (tΨ ∩ k) is a Cartan subalgebra of gΨ (kΨ), and 1.1 is the corresponding

Cartan decomposition.

The Weyl group WΦ acts on the set of root subsystems by w ·Ψ := {w · α : α ∈ Ψ}

Proposition 1.47. Let Ψ1, Ψ2 be two root subsystems. Then, gΨ1 = gΨ2 ⇐⇒ ∃w ∈ WΦ

such that w·Ψ1 = Ψ2. In particular, the map Ψ 7−→ gΨ descends to a poset isomorphism

{Ψ ≤ Φ}/WΦ ←→ Cg.

This bijection also occurs for the compact form, as the compact forms of Cg are in

bijection with Cg.

The order in Cg comes from inclusion too, [h1] ≤ [h2] if there exist representatives h1,

h2 of the classes such that h1 ⊆ h2

For a regular semisimple algebra h of g, let gΨ be a representative of [h]. Then, the

Weyl group Wh can be seen as a subgroup of Wg as the group generated by the roots

Ψ, and therefore the index |Wg : Wh| is well defined

Definition 1.48. We call the embedding number of h in g is defined as

mg(h) := |Wg : Wh||{w ·Ψ : w ∈ Wg}|

In particular, note that mg(g) = 1 and that mg(0) = |Wg|.
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1.4.5 Classification of Semisimple Lie algebras

Theorem 1.49 (Classification of complex simple Lie algebras). A simple Lie algebras

over the complex numbers belongs to one of the following families of classical algebras

An := sln+1C, Bn := so2n+1C, Cn := sp2nC, Dn := so2nC,

or is one of the five exceptional Lie algebras g2, f4, e6, e7, e8.

This theorem can be generalized to any closed field with characteristic 0, as it is

based on the construction of Dynkin diagrams, and can be applied to any such field.

Moreover, it can be generalized to real algebras. However, the classification is quite

more complex, but as we have seen, there is a one to one correspondence of complex

simple algebras and compact real forms, we can classify them by the same families.

More specifically,

Theorem 1.50 (Classification of compact Lie algebras). A compact Lie algebra belongs

to one of the following families of classical algebras

An := sun+1, Bn := so2n+1, Cn := spn, Dn := so2n,

or is one of the five exceptional compact Lie algebras g2, f4, e6, e7, e8.

1.5 Hamiltonian Actions

In this section we will describe group actions on symplectic manifolds, which represent

symmetries in those spaces, and which will be the main focus of this text. We will

mainly follow [12], [5], [23], [2], [33], [42] and [26].

Definition 1.51. Let G be a Lie group, acting symplectically on a manifold (M,ω).

We say that the G−action is Hamiltonian if there exists a G−equivariant map µ :

M −→ g∗, called the moment map, such that

d⟨µ, ξ⟩ = ιξMω

∀ξ ∈ g, and ξM is the generating vector field of ξ in M .

We call the space (M,G, µ) a Hamiltonian space.
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One can see that for any G-Hamiltonian space (M,G, µ), for a Lie subgroup H ⊆ G

the induced H−action is Hamiltonian with moment map µH = ι∗ ◦ µ, where ι∗ is the

dual of the inclusion function of H in G.

Example 1.52. Let the circle S1 act on the sphere S2, by the action generated by
∂
∂θ
, where we use the standard coordinates {θ, h} on the sphere with symplectic form

ω = dθ ∧ dh. Then, we can see that

µ

Figure 1.1: Moment map of the S1-action by rotation on a symplectic S2 [35]

ι ∂
∂θ
ω = dh

Therefore, the moment map is just the height function of the sphere.

Example 1.53. Let G act smoothly on a smooth manifold M . Then, the G−action
can be lifted to a Hamiltonian G−action on the cotangent bundle T ∗M .

Example 1.54. A toric manifold M2n is a symplectic manifold together with a

Hamiltonian toric action of maximal rank, T n. These manifolds are completely clas-

sified by their images, which are a special class of polytopes in Rn called Delzant

polytopes. To be more precise, Delzant theorem establishes a bijection between

toric manifolds and Delzant polytopes

An important theorem in Hamiltonian spaces is the slice theorem. There are a

multitude of slice theorems, but the one we will introduced is the Hamiltonian slice

theorem, first formulated by Guillemin-Sternberg in [21], and independently by Marle

in [31].

Theorem 1.55 (Hamiltonian slice theorem). Let (M,G, µ) be a Hamiltonian space.

Let p be a point in M such that Op is contained in the zero level set of the moment

map. Denote H the stabilizer of p, K the stabilizer of µ(p), Op the orbit of p, h the

lie algebra of H, k the Lie algebra of K, and Vp = TpM/TpOp the symplectic slice,

there exists neighbourhood of the orbit Op which is equivariantly diffeomorphic to a

neighbourhood of the orbit G · [e, 0, 0] in

Y := G×H ((h◦ ∩ k∗)× Vp).
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In this local model, the moment map µ : M −→ g∗ can be written as

µ([g, γ, v]) = Ad∗g(µ(p) + γ + ϕ(v)),

where ϕ : Vp −→ h∗ is the moment map for the symplectic slice. The symplectic form

on the space Y is called the MGS-symplectic form and will usually be noted as ωMGS.

1.5.1 Marsden-Weinstein Reduction

For a Hamiltonian G−space, if the action of the group is free, the Marsden and Wein-

stein proved that the reduced space is a symplectic manifold

Theorem 1.56 (Marsden-Weinstein reduction). Let a Lie Group G have a free Hamil-

tonian action on the symplectic manifold (M,ω), with proper moment map µ. Then,

if 0 is a regular value of the moment map, the reduced space

M//G := µ−1(0)/G

is a symplectic space, with the unique symplectic form ω0 such that the pullback of the

quotient π∗ω0 = ω|µ−1(0) coincides with the restriction of the symplectic form on the 0

level set.

The proof of the theorem relies on the slice Theorem 1.55, which gives a normal form

on the neighbourhood of an orbit, and the construction relies on the fact that the 0

level set is a coisotropic submanifold such that the leaves of the null foliation of ω|Z
are precisely the G−orbits.
The theorem is proven for the 0 value of the moment map. However, for a regular

value ξ of the moment map, it is possible to see the reduction at value ξ as another

reduction on the 0 level set. This is called the shifting trick, and is used in most

constructions of reductions to allow the reduction to be focused at 0 value.

Proposition 1.57. For a value ξ ∈ g∗, the reduced space at ξ is defined as

Mξ = µ−1(Oξ)/G.

This reduction can be seen as the reduction at level 0 of another G−Hamiltonian space.

Proof. Consider the symplectic manifold M × O−ξ, which is a product of symplectic

manifolds. The diagonal G−action on M × O−ξ is Hamiltonian with moment map
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µξ(p, ζ) = µ(p) + ζ. Zero is a regular value of µξ, and the reduced space at zero is

Mξ = µ−1
ξ (0)/G = µ−1(0)/G.

The Marsden Weinstein reduction has an easy generalization. If the action is locally

free, instead of free, the reduced space is singular. However, the singularities are well-

behaved, and the reduced space is an orbifold (see [27]).
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Chapter 2

Singular reduction

In the case where G does not act freely, the reduction space will not be a symplectic

manifold, and not even a smooth manifold. However, the resulting space has a rich

structure which we call a stratified symplectic space. Loosely speaking, a stratified

manifold consists of a union of symplectic manifolds, the symplectic strata, which fit

together nicely. On this space one has a set of “smooth functions”, which are smooth

functions when restricted to the strata, and form a Poisson algebra whose bracket

coincides with the natural brackets on the strata.

This generalization of the Marsden-Weinstein reduction was proven in 1991 by Sja-

maar and Lerman in [42], and in this section we will cover the basic definitions and

results exposed in it, as well as giving an outline of the involved proofs, following [42]

and [30].

2.1 Stratified spaces

The main idea is that a stratification is a partition of a topological space in a disjoint

union of manifolds which satisfy certain conditions. In particular, a manifold is trivially

a stratified space. A more interesting example, and the local model for stratified

manifold, is the the cone over a manifold:

Definition 2.1. The open cone
◦
CM over a manifold (or topological space) M is the

product M × [0,∞) modulo (x, 0) ∼ (y, 0).

This cone
◦
CM is the disjoint union of two manifolds, M × (0,∞) and the vertex ∗

of the cone. Similarly one can consider the cone over the cone of a manifold
◦
C(

◦
CM),
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which will be a stratified space and decomposes in three disjoint manifolds:

• the manifold (M × (0,∞))× (0,∞),

• the open half line ∗ × (0,∞) through the vertex of
◦
CM ,

• the vertex * of
◦
C(

◦
CM).

In general, stratified spaces are locally a cone over a cone over a cone ....

Definition 2.2. A decomposed space is a Hausdorff and paracompact topological

space X equipped with a locally finite partition P = {Si} of disjoint locally closed

manifolds Si ⊂ X, called pieces. If I is a poset and the pieces satisfy

Si ∩ S̄j ̸= 0⇐⇒ Si ⊂ S̄j ⇐⇒ i ≤ j,

which is called the frontier condition, we call the space X an I-decomposed space.

In particular, the condition Si ⊂ S̄j imposes a partial order on the strata, and all

I-decomposed spaces can be seen as P−decomposed spaces, where P is the set of the

strata with this partial order. By abuse of notation, we sometimes might omit I and

write that X is a decomposed space even if it satisfies the frontier condition, and the

poset will then be assumed then to be the order on the strata.

The dimension of a decomposed space X is defined as dimX = supi∈I dimSi.

Proposition 2.3. Let X be an I-decomposed space. Then, the closure of a strata Si

can be written as

Si =
⊔
j≤i

Sj =
⊔
S≤Si

S

Proof. As P = {Sj} is a partition, we have

Si = Si ∩X = Si ∩
⋃
S∈P

S =
⋃
S∈P

Si ∩ S =
⋃
j≤i

Si ∩ Sj =
⋃
j≤i

Sj,

as Si ∩ Sj ̸= ∅ ⇒ j ≤ i and Si ∩ Sj = Sj. The union is disjoint as P is a partition.

Example 2.4. Consider the subset of R2

X =
{
(x, y) ∈ R2 : y = 0

}
∪
{
(x, y) ∈ R2 : x2 − y ≤ 0

}
. (2.1)
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The space X can be broken as a union of manifolds as

X = {x2 − y < 0} ∪ {x2 − y = 0} ∪ {x < 0, y = 0} ∪ {x > 0, y = 0} (2.2)

or as

X = {x2 − y < 0} ∪ {x2 − y = 0, x < 0} ∪ {x2 − y = 0, x > 0}∪ (2.3)

{x < 0, y = 0} ∪ {x > 0, y = 0} ∪ {(0, 0)}. (2.4)

In both cases, as expected, its dimension as a decomposed space is dimY = 2.

Example 2.5. The product of two decomposed spaces X =
⊔
Si and Y =

⊔
Pj is a

decomposed space

X × Y =
⊔
i,j

Si × Pj.

Its dimension dimX × Y will be the product of the base dimensions dimX · dimY .

We will consider finite-dimensional spaces exclusively.

Definition 2.6. For an I-decomposition P = {Si} of a space X, we define the depth

of a piece as the integer

depthXS = sup
n
{∃ Sj ∈ {Si}, 0 ≤ j ≤ n : S = S0 < S1 < ... < Sn}.

It is clear that the depth of a piece is bounded by its codimension. For a decomposed

space X we define its depth as

depthX = sup
i∈I

depthXSi.

We will use the definition of depth to define a stratification by recursion. If a de-

composition of X has depth 0, then X is a manifold (it only has one piece) and is

automatically a stratification.

Definition 2.7. A decomposed space X is called a stratified space if the pieces of

X have conical slices, i.e., they satisfy that:

For all points x in a piece S there exists an open neighbourhood U ⊂ X of x, an

open ball B ⊂ S around x, a compact stratified space L, called the link of x, and a

homeomorphism

φ : B ×
◦
CL −→ U (2.5)

21



that preserves the decompositions, i.e., it maps pieces into pieces. In the case of a

stratification, the pieces are called strata.

Remark. One can prove that a stratified space is an I-decomposed space, as it satisfies

the frontier condition.

Example 2.8. The decomposition 2.2 does not fulfil the frontier condition, therefore

it is not an stratification. For the decomposition 2.3 the frontier condition is fulfilled,

and one can prove that it is an stratification.

Example 2.9. For a compact Lie group G acting smoothly, but not freely, on a

manifold M , the orbit space M/G is a stratified space. For each closed subgroup

H ⊆ G, let (H) denote the conjugation class of H in G. We say that a point p ∈ M

has orbit type (H) if its stabilizer StabG(p) is conjugate to H, and we denote the the

set of points of orbit type (H) as

M(H) := {p ∈M : StabG(p) ∈ (H)}.

The orbit type decomposition P = {M(StabG(p))/K} is a stratification in the sense of

Definition 2.7, for the fact that the strata might not be a proper manifold, they might

have connected components of different dimensions. However, it is possible to refine

the partition, taking the connected components of the strata, and obtain a genuine

stratification.

Now we want to give this stratification a differential structure, which we will do by

defining which set of functions C0(X) are smooth. This will be a subalgebra C∞(X)

of C0(X), which will be called a smooth structure on X, and must be compatible with

the stratification:

Definition 2.10. A smooth structure C∞(X) on a stratified space X whose strata

are smooth manifolds is a subalgebra of the continuous functions C0(X) such that for

any f ∈ C∞(X) the restriction to a stratum is smooth, f |S ∈ C∞(S).

Example 2.11. For a stratified space X which is a subspace of a smooth manifold M ,

its Whitney smooth functions are:

C∞(X) = {f : X −→ R : ∃F̄ ∈ C∞(M), f = F̄ |X}

Definition 2.12. Given two spaces X, with smooth structures, a continuous map

φ : X −→ Y is smooth if for all f ∈ C∞(Y ), φ∗f ∈ C∞(X). In particular, the

inclusion of the strata into the space is smooth.
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Definition 2.13. A stratified symplectic space X is a stratified space with a

smooth structure C∞(X) such that:

• the strata are symplectic manifolds,

• C∞(X) is a Poisson algebra,

• the embeddings S ↪→ X of the strata are Poisson

The third condition briefly means that the Poisson bracket on the restriction of

functions to a stratum S and the restriction of the Poisson bracket of those functions

to the stratum coincides, i.e., ∀ f, g ∈ C∞(X) {f |S, g|S}S = {f, g}
∣∣
S

Example 2.14. The prototypical example is the singular symplectic reduction 2.16.

For a symplectic manifold (M,ω) with Hamiltonian G−action and proper map µ, the

reduced space M0 = µ−1(0) is a stratified symplectic space.

We will lastly introduce the concept of equivalences between stratified symplectic

spaces:

Definition 2.15. An homeomorphism between stratified symplectic spaces is called a

stratified symplectomorphism if it preserves the stratification and the restriction on the

strata are symplectomorphism. In particular, one can prove (see [30, 2.14], [42, §3],)
that a continuous map is a stratified symplectomorphism if and only if its pullback is

a isomorphism of the Poisson algebras.

2.2 Sjamaar-Lerman Reduction

We will now cover the main results of Sjamaar-Lerman [42]. This lengthy paper was

published in 1991, and it extended the theory developed by Marsden and Weinstein in

[33]. The main result of the paper is

Theorem 2.16. Let (M,G, µ) be a Hamiltonian space with proper moment map µ.

The reduced space M0 is a stratified symplectic space with a decomposition

M0 =
⊔

(H)≤(G)

(M0)(H), (2.6)

where (M0)(H) =
(
M(H) ∩ µ−1(0)

)
/G is a symplectic manifold with natural symplectic

form (ω0)(H), which is determined by the fact that its pullback to M(H) ∩ Z coincides

with the restriction of the symplectic form on M .

23



This is a generalization of the MW symplectic reduction to non-free actions and

singular values of the moment map, but where one obtains a stratified symplectic

space instead of a symplectic manifold due to the less strict hypothesis.

The lengthy proof of this theorem is the subject of the 57 page-long paper [42], and

in this section we will sketch the main ideas of the proof, and cover the main results

found along the paper. Therefore, the structure of the section will be similar to [42],

to which we will incorporate results of [30].

2.2.1 Decomposition of the reduced phase space

Theorem 2.17. Let (M,G, µ) a Hamiltonian space with proper moment map µ. The

intersection of the manifold M(H) of orbit type (H) with the zero level set Z = µ−1(0)

is a smooth manifold, and the orbit space

(M0)(H) =
(
M(H) ∩ Z

)
/G

has a natural symplectic structure (ω0)(H), determined by the fact that its pullback

to Z(H) := M(H) ∩ Z coincides with the restriction of the symplectic form on M .

Therefore, the stratification of M by orbit types induces a decomposition of the reduced

space M0 = Z/G into a disjoint union of symplectic manifolds,

M0 =
⊔

(H)≤(G)

(M0)(H)

The first step on the proof of Theorem 2.17 is to first prove the decomposition of the

reduced space into the different (M0)(H), the proof of which utilizes a generalization of

the isotropic embedding theorem.

Theorem 2.18 (Constant Rank Embedding). Let A be a manifold with a closed two-

form with constant rank τ . Then there exists a bijection between symplectic vector

bundles over B and embeddings i of B into higher dimensional symplectic manifolds

(A, σ) such that i∗σ = τ .

In particular, we can apply this theorem to two special cases:

• If the form τ on the manifold B is 0, the theorem gives a one to one correspon-

dence between the symplectic vector bundles over B and the isotropic embeddings

of B.
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• If the τ has maximal rank, the manifold B is a symplectic manifold, and the

theorem is the symplectic embedding theorem.

Using this theorem, and the Hamiltonian slice Theorem 1.55, one can prove the

decomposition of the reduced space into the different (M0)(H), applying it to the points

with different isotropy groups. Similarly to the orbit type decomposition 2.9, the space

(M0)(H) might not be strictly a manifold, as it might contain components with different

dimensions. However, we can refine the decomposition into the different connected

components of the strata.

2.2.2 Dynamics on the reduced space

One can stablish Hamiltonian dynamics on the reduced space M0, for which we will

need to define a Poisson algebra of smooth functions on the reduced space.

Definition 2.19. We say a function f ∈ C0(M0) is smooth if there exists a function

F ∈ C∞(M)G such that F |M0 = π∗f , where π is the orbit map. We denote the space of

smooth functions on M0 as C
∞(M0). To be more precise, we can show that this space

is isomorphic to C∞(M)G/IG, where IG is the set of G-invariant functions vanishing

on µ−1(0), and that it inherits a Poisson structure from the Poisson algebra of smooth

functions on M (see [1]).

Proposition 2.20. The bracket of two smooth functions f, g ∈ C∞(M0) is a function

in C∞(M0).

The bracket structure on the reduced space is therefore well behaved, and by coincides

with the bracket of the functions on the strata. The reduced space is therefore a Poisson

algebra, and we can define Hamiltonian dynamics on it, with the typical Hamiltonian

relations in Poisson algebras. In particular, we have that the Hamiltonian flows of

functions f ∈ C∞(M0) on the reduced space preserve the symplectic pieces of the

symplectic pieces of M0, as the restriction of the Hamiltonian flow to a stratum is a

Hamiltonian flow of the restricted function on the stratum. This is a common trait

of stratified symplectic spaces, and is why an homeomorphism whose pullback is a

Poisson isomorphism is a stratified symplectomorphism.

The dynamics on the reduced space, allow us to observe that the intersection of the

manifold MH = {p ∈ M : StabG(p) = H} and the zero level set of the moment map,

is a manifold which fibres over the piece (M0)(H) with fibre space NG(H)/H. The

fibre projection can be seen to coincide with the orbit map of the induced NG(H)/H-

action on M ′
H , the union of components of MH which intersects the zero level set Z
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non-trivially. If we call the induced moment map of the muH : M ′
H −→ l∗, we obtain

that:

Theorem 2.21. Zero is a regular value of the moment map µH . The piece (M0)(H) is a

symplectic manifold obtained from the regular Marsden-Weinstein reduction M ′
H//(NG(H)/H).

2.2.3 Reduction in stages

We have already seen that the reduced space M0 is a decomposition, that it satisfies

the frontier condition, and that we have Hamiltonian mechanics on the which agree

with the Hamiltonian dynamics on the strata. Therefore, the only condition left to

prove is the existence of conical slices, which will be the hardest to prove. But before

we jump onto it, lets look at another previous result.

An important result in the paper is the ability to proceed by stages in the reduction.

This is formulated as the following.

Theorem 2.22 (SL Reduction by stages). Let G1 and G1 act with Hamiltonian actions

and moment maps µ1, µ2 on the symplectic space (M,ω). If the actions commute, and

we have an action of the product space G1 × G2, then the action is Hamiltonian with

moment map µ = (µ1, µ2). If the map µ1 is not G2 invariant, we can construct this

moment map by averaging over the group G2, and analogously for the µ2 map.

Then the reduction

M//(G1 ×G2) = (M//G1)//G2 = (M//G2)//G1.

To be more precise, M//G1 is a G2 Hamiltonian space, and the reduction by G2 is equal

to M//(G1 ×G2). It is analogous for the other group.

2.2.4 A normal form and a Whitney embedding

To finalize we will look at the final steps of the prove. They consist on both a normal

form for the reduction, and, finally, the proof of the existence of conical slices.

Reduction in stages allows us to construct a simple local model for the neighbourhood

of a point in the reduced space.

Theorem 2.23. Let x be a point of the reduced space M//G, p a point on the 0

level set such that its image under the reduction is x. Let H be the stabilizer of p,

V = (Tp(Op))
ω/Tp(Op) be the fibre at p of the normal symplectic bundle of the orbit
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through p, and ωV its symplectic form. Let 0̄ be the image of the origin in the reduced

space Φ−1(0)/H, where Φ is the moment map of the H−action on V .

Then, there exists a neighbourhood U of x in M0 that is isomorphic to a neighbourhood

U2 of 0̄ in Φ−1(0)/H. More precisely, there exists an homeomorphism φ : U1 −→ U2

that induces an isomorphism

φ∗ : C∞(U2) −→ C∞(U1)

of Poisson algebras, a stratified symplectomorphism.

This normal form has a two-fold importance. First, it allows us to describe the top

strata of the stratification. Secondly, it allows us to construct the link of a point.

Theorem 2.24. If the moment map µ is proper, there exists a unique piece (M0)(H)

which is open in the reduced space. It is also connected and dense.

As the strata is dense, (M0)(H) = M0 and therefore, all strata S are contained in its

closure S ⊆ (M0)(H), so the piece (M0)(H) is maximal, S ≤ (M0)(H) for all strata S, an

the strata is the top strata. In particular, the existence of this strata also proves that

the Poisson algebra C∞(M0) is non degenerate, which means that its centre is formed

only by locally constant functions.

The normal form might allow us to construct a link. However, it is not immediate

that it is a link, and to prove it we will construct a Whitney embedding of the reduced

space, whose image is a Whitney stratification.

Definition 2.25. LetX be a subspace of Rn a decomposition ofX is called aWhitney

stratification if the pieces of X are smooth submanifolds of Rn, and for pieces P,Q

with P ≤ Q, the following condition, called Whitney’s condition B holds.

For an arbitrary point p ∈ P , let {pi} and {qi} be sequences in P and Q, respectively,

such that both of them converge to p. Assume that the lines li joining pi and qi converge

in the projective space RP n−1 to a line l, and that the tangent planes TqiQ converge

in the Grassmanian of (dimQ)−planes in Rn to a plane τ . Then l is contained in τ .

Whitney stratified spaces are stratified spaces in the sense of the Definition 2.7, and

the local form 2.23 will allows us to obtain an embedding into Rn such that the image

is a Whitney stratification, which will finally prove the existence of the conical slices

(see [42, §6]).
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2.2.5 Examples of singular reduction

Example 2.26. This example is taken from [30], where the complete details can be

found. We can consider the space R2 with the standard action of the circle group

SO(2). If we lift the action to the cotangent bundle T ∗R2 ∼= R2 × R2, in standard

coordinates the action will be
p1
p2
q1

q2

 7−→

cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 cos θ − sin θ

0 0 sin θ cos θ



q1

q2

p1
p2

 .

The cotangent bundle will have with the canonical symplectic form ω = dq1 ∧ dp1 +

dq2 ∧ dp2 and the SO(2) action has moment map µ(q, p) = q1p2 − q2p1. The zero level

set is then the union of a point 0 and the hypersurface

Z = {dq1 ∧ dp1 + dq2 ∧ dp2 = 0, (q, p) ̸= (0, 0)}.

The hypersurface is, as one would expect, a SO(2)−invariant coisotropic submanifold

of T ∗R2. On it SO(2) has a free action, and the null directions of the restriction of

the symplectic form ω to Z are the orbital directions. The reduced space (T ∗R2)0 is

therefore a disjoint union C0 ⊔ C1, where C0 = {0}/SO(2) ∼= {0} and C1 = Z/SO(2),

which can be seen to be symplectomorphic to the standard R2/{0}, and that the whole

space is homeomorphic to the upper half of the standard cone in R3, T ∗R2 ≃ {x2
1 =

x2
2 + x2

3, x1 ≥ 0}, a symplectic surface with a point singularity at the origin.

Example 2.27. Let D be a discrete group that acts by symplectomorphisms on a

symplectic manifold (M,ω). Then, the trivial map µ = 0 is a moment map, and the

space (M,D, µ) is Hamiltonian. The reduced space M//D = M/D is a symplectic

orbifold (see [27]). In particular, the dimension of the reduction will remain constant.

2.2.6 Some useful lemmas

In this section we will include some lemmas that are be useful for the calculation of

reductions:

Lemma 2.28. Let (M,K, µ) and (N,L, ν) be Hamiltonian spaces, f : K −→ L a

Lie group morphism and F : M −→ N an f−equivariant symplectic map which sends

µ−1(0) to ν−1(0). If K and L act freely, then F descends to a symplectic map F̄ :

28



M//K −→ N//L. And more generally, if F (MA) ⊆ NB for some A ⊆ K,B ⊆ L, then

the restriction F̄ : (M//K)(A) −→ (N//L)(B) is a symplectic map.

Proof. Lets first focus on the case K and L act freely. The symplectic form on M//K

is characterized by its pullback on µ−1(0) being the restriction of the symplectic form

on M, as is the case in in N//L, and therefore it is immediate that F̄ preserves the

symplectic form.

Now suppose that F (MA) ⊆ NB for some A ⊆ K,B ⊆ L. It is well known (see

[14, Proposition 27.5]) that MA is a symplectic submanifold of M , and that NG(A)/A

acts freely on it, and (MA, NG(A)/A, µ|MA
) is a Hamiltonian system. The symplec-

tic form in (M//K)(A) = µ−1(0)(A)/K comes from its identification with the space

MA//(NG(A)/A), and therefore we can use the previous argument replacing M, N

with MA, NB respectively.

Lemma 2.29. Let (M,G, µ) and (N,G, ν) be Hamiltonian spaces, F : M −→ N

a G−equivariant injective smooth (symplectic) map which sends µ−1(0) into ν−1(0).

Then, the map F descends to a stratified (symplectic) homeomorphism between M//G

and its image F̄ (M//G) ⊆ N//G.

Proof. For a point m ∈ M , we have that ZG(m) = ZG(n), where n = F (m) ∈ N . Let

g ∈ ZG(m). Then

n = F (m) = F (gm) = gF (m) = gn⇒ g ∈ ZG(n)⇒ ZG(m) ⊆ ZG(n).

On the other hand, let g ∈ ZG(n). Then

F (m) = n = gn = gF (m) = F (gm)⇒ m = gm⇒ g ∈ ZG(m).

Therefore, the isotropy groups are preserved by the function F , and the function F̄ pre-

serves the stratification. The map F̄ is open, as it is the composition of open functions,

the projection onto the quotient (see [29, Proposition 4.28]), and the diffeomorphism

of M onto its image. And as all maps, it is injective on its image. Therefore, the map

is an homeomorphism, which preserves the stratification.

Moreover, if the map F is symplectic, by Lemma 2.28 it is symplectic over the strata

that it preserves, all of them.

Lemma 2.30. Let G,H be a connected Lie groups and (M,G, µG),(M,H, µH) be

Hamiltonian spaces such that their effective actions are the same, i.e., the images
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of the two actions in Diff(M) coincide. Then the reduced spaces M//G and M//H are

canonically isomorphic.

Proof. Let K ⊂ Diff(M) be the common image of both actions. The maps

ϕG : G ↠ K, ϕH : H ↠ K

are surjective Lie-group homomorphisms with discrete kernels acting trivially on M ,

from which we can obtain the exact sequences

1 −→ kerϕG −→ G
ϕG−−→ K, 1 −→ kerϕH −→ H

ϕH−−→ K.

By equivariance, there exists a single moment map

µK : M −→ k∗ such that µG = ϕ∗
G ◦ µK , µH = ϕ∗

H ◦ µK .

Since ϕG and ϕH are surjective on the Lie algebras, ker(ϕ∗
G) = {0} and ker(ϕ∗

H) = {0},
which gives us

µ−1
G (0) = {x ∈M : µK(x) ∈ kerϕ∗

G } = µ−1
K (0) = µ−1

H (0).

Denote this common zero-level by Z = µ−1
K (0). The pullback ι∗ω of the ambient

symplectic form to Z is basic for the K–action, and hence descends to the reduced

form ωK
red on Z/K. Likewise it descends to ωG

red on Z/G and ωH
red on Z/H.

On Z, both kerϕG and kerϕH act trivially and preserve ι∗ω. Therefore the natural

identifications

Z/G ∼= (Z/ kerϕG) /
(
G/ kerϕG

) ∼= Z/K, Z/H ∼= (Z/ kerϕH) /
(
H/ kerϕH

) ∼= Z/K

are in fact symplectomorphisms (they carry ωG
red and ωH

red to the same ωK
red on Z/K).

Composing these gives a canonical symplectomorphism

M//G = (Z, ι∗ω)/G ∼= (Z, ι∗ω)/K ∼= (Z, ι∗ω)/H = M//H,

as stratified symplectic spaces, completing the proof.
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Chapter 3

Singular Reduction of the

Cotangent Bundle of a Lie Group

This chapter will cover two examples of singular reduction, covering the reduction of

the tangent bundle of a Lie group G by subgroups of the natural product action of

G×G. The first section consists on an adaptation of Mayrand’s work [36] to the real,

compact case, and the second section is based on similar ideas.

Let G be a compact connected semisimple Lie group. G acts on itself by the left and

right action, which can be lifted to the cotangent bundle T ∗G. Using the trivialization

of the cotangent bundle, G×g∗, the action of (g, h) ∈ G×G on an element (x, ξ) ∈ G×g∗

is (gxh−1,Ad∗
hξ). The action is Hamiltonian with a moment map

µ0 : G× g∗ −→ g∗ × g∗ µ0(x, ξ) 7−→ (Ad∗
xξ,−ξ).

From this moment map we will derive the moment map for the various subgroups that

we will consider.

For the duration of this chapter, let g be the Lie algebra ofG, let T be a maximal torus

of G with corresponding Cartan subalgebra t = Lie(T ), and let Φ be the corresponding

root system. In addition, let G̃ be the universal covering of G, and suppose that

G = G̃/Γ, with Γ ⊆ Z(G̃).

3.1 Reduction by T × T

In this section we will look at the reduction of T ∗G by the subgroup T × T , which we

will noted as D(G) := T ∗G//T × T . The action is Hamiltonian, and has a moment
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map that consists of the moment map µ0 projected onto the dual Lie algebra of the

subgroup t∗ × t∗, µT (x, ξ) = (Ad∗
xξ|∗t , ξ|∗t ).

The main results in this section include the independence of the reduction on the

specific group G, just on its Lie Algebra g; that the stratification poset can be seen as

the root subsystems of Φ; and we will give an iterative description of the strata.

3.1.1 The stratification only depends on the Lie algebra g

To start, we will prove that the reduction depends only on the Lie algebra g, which

will justify our later notation of D(g). We will prove this by giving a model for the

reduction, which will not depend on the Lie group, which will enable us to proof the

following theorem:

Theorem 3.1. Let G̃ be the universal covering space of G. There exists a stratified

symplectomorphism between D(G) and D(G̃).

Therefore, for a compact semisimple Lie algebra h we will define D(h) := D(Gh),

where Gh is a compact semisimple Lie Group (see Theorem 1.38).

To obtain the model for the reduction, we will use the reduction by stages procedure

described in [42], from which we have that D(G) = T ∗G//T×T = (T ∗G//1×T )//T×1.
For the right torus action, the moment map will be the second component of the

µT moment map, µR(x, ξ) = ξ|∗t , and as the action is free, the reduced space is a

symplectic manifold. Therefore, we can identify the 0 level of the moment map with

G × t◦, and quotiented by the right T -action we obtain the space G ×T t◦. This

manifold can be identified with the tangent bundle of a regular coadjoint orbit. More

specifically, let τ ∈ treg be a regular element, and O = G · τ its regular orbit, then

G×T t◦ is symplectomorphic to the cotangent bundle T ∗O via the G-equivariant map

(g, ξ)→ (Adgτ,Adg∗ξ), where G acts on T ∗O by the coadjoint action (See [10, Lemma

1.4.9] or [40, Theorem 6.6.1 ]).

For the left torus action, the action is Hamiltonian with a moment map that is the

first component of µT , µL(x, ξ) = Ad∗
xξ|∗t , with 0 level set µ−1

2 (0) =
{
(g, ξ) ∈ G×T t◦ :

Ad∗gξ ∈ t◦
}
. By the previous isomorphism one can identify it with T ∗O ∩ g × t◦.

Therefore, it descends to a stratified symplectomorphism on the reduced spaces by T ,

and we obtain

Theorem 3.2. The reduction D(G) is isomorphic to the reduced space (T ∗O ∩ g× t◦) /T .

Moreover, the T × T stratification in D(G) coincides with the T stratification in

(T ∗O ∩ g× t◦) /T .
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Therefore, we can now prove the independence on the Lie Group:

Proof. [Theorem 3.1] The reduction for the group G is D(G) = (T ∗O ∩ g× t◦) /T ,

and for its universal covering is D(G̃) = (T ∗O ∩ g× t◦) /T̃ , where T̃ is the universal

covering of the maximal torus T = T̃/Γ. As T and T̃ act by the coadjoint action, which

is trivial over central elements, they act by the same effective action on T ∗O ∩ g × t◦

and therefore, by Lemma 2.30 their reductions are equal .

3.1.2 The stratification poset

We will now give a calculation of the stratification poset for this reduction. We will

find a poset equivalence between the stabilizers and root subsystems Ψ ≤ Φ of the Lie

algebra g. As the reduction is stratified by the conjugacy class of the stabilizers, but

the T × T -action is abelian, the reduction is stratified by just the stabilizers.

From Theorem 3.2 we know that D(g) = (T ∗O ∩ (g × t◦)/T . For our calculations

it will be convenient to identify g∗ with g using the Killing form, which gives us the

identification of t◦ with t⊥. Then, we have that D(g) = (TO ∩ (g × t⊥)/T , where T

acts by the adjoint action on both factors.

The first step will be to determine the stabilizer of a general point.

Lemma 3.3. The stabilizer of the point (X, Y ) ∈ g× g under the adjoint T action is

ZΦ(X,Y ), where

Φ(X, Y ) = Φ ∩ spanZ{α ∈ Φ : (Xα, Yα) ̸= (0, 0)}.

Φ(X, Y ) is a root subsystem of Φ.

Proof. As the elements of the stabilizer of (X, Y ) ∈ g×g must both fix X and Y , using

[8, §V.2] we get that t ∈ T fixes (X, Y ) if and only if t ∈ ZΦ(X)∩ZΦ(Y ) = ZΦ′(X,Y ), where

Φ′(X, Y ) = Φ(X)∪Φ(Y ) = {α ∈ Φ : (Xα, Yα) ̸= (0, 0)}. However, we don’t necessarily
have that Φ′(X, Y ) is a root subsystem, but we can take the minimal root subsystem

that contains Φ′(X, Y ), which is Φ(X, Y ), and prove that ZΦ′(X,Y ) = ZΦ(X,Y ).

Trivially, as Φ′(X, Y ) ⊆ Φ(X, Y ) ⇒ZΦ(X,Y ) ⊆ ZΦ′(X,Y ). Conversely, if we take γ ∈
Φ(X, Y ), it can be written as an integer combination γ =

∑
niαi, with αi ∈ Φ′(X, Y ).

Therefore, for an element t ∈ ZΦ′(X,Y ), γ(t) =
∏

αi(t)
ni = 1, which gives us ZΦ(X,Y ) ⊆

ZΦ′(X,Y ).

Therefore, we obtain that orbit types can be identified with root subsystems via the

map ZΨ 7−→ Ψ. If we define D(g)Ψ := D(g)ZΨ
for a root subsystem Ψ, the previous
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map can be seen as a map from the strata to the root subsystems D(g)Ψ 7−→ Ψ. We

now set to prove that this identification is a poset isomorphism.

Lemma 3.4. D(g)Ψ ̸= ∅ for all root subsystems Ψ ≤ Φ.

Proof. For a root subsystem Ψ, take 0 ̸= Xα ∈ gCα for all α ∈ Ψ+. Then X̄α ∈ gC,−α,

and we can define X =
∑

α∈Ψ+

(
Xα + X̄α

)
∈ g an the point (τ,X) ∈ TO ∩ (g × t⊥).

Moreover, as τ ∈ treg ⇒ τα = 0 ∀α ∈ Ψ, the root subsystem associated to the point

(τ,X) will be Φ(τ,X) = Φ(X) = Ψ and therefore (τ,X) ∈ D(g)Ψ.

With this we have proven that the identification is a surjective. We now prove that

preserves the order over the elements. For this, the following lemma will be useful.

Lemma 3.5. If Ψ is a root subsystem, and α ∈ Φ is such that α(t) = 1 for all t ∈ ZΨ,

then α ∈ Ψ.

Proof. We will see α as an element of t∗, so we want to prove that if α(H) ∈ 2πiZ for

all H ∈ t such that the set {β(H) : β ∈ Ψ} ⊆ 2πiZ, then α ∈ Ψ. Let βi, . . . , βk ∈ Ψ be

a set of simple roots and complete it to a basis β1, . . . , βn of t∗, and let H1, . . . , Hn be

its dual base of t, i.e. βi(Hj) = δij. Our element α ∈ t∗ can be written as α =
∑

i aiβi.

For an element Hj j > k and an scalar θ we have that β(θHj) = θ · 0 = 0 for all

β ∈ Ψ, so we must have that α(θHj) = ajθ ∈ 2πiZ for all values of θ, which implies

that aj = 0 for all j > k.

For Hj ≤ k we have that β(2πiHj) ∈ 2πiZ for all β ∈ Ψ. Therefore, we have

that α(2πiHj) = 2πiaj ∈ 2πiZ, which gives us that aj ∈ Z, giving that α is a integer

combination of elements in Ψ and therefore α ∈ spanZΨ ∩ Φ = Ψ.

Theorem 3.6. The map D(g)Ψ 7−→ Ψ is a poset isomorphism. Therefore, the strati-

fication of D(g) is given by the root subsystems Ψ ⊆ Φ.

Proof. By definition, if Ψ1 ⊆ Ψ2 ⇒ D(g)Ψ1 ≤ D(g)Ψ2 , as ZΨ2 ⊆ ZΨ1 . Suppose then

that D(g)Ψ1 ≤ D(g)Ψ2 ⇐⇒ ZΨ2 ⊆ ZΨ1 . For α ∈ Ψ1, as ZΨ2 ⊆ ZΨ1 , we have that

α(t) = 1 ∀ZΨ2 , and using Lemma 3.5 we obtain that D(g)Ψ1 ≤ D(g)Ψ2 . Therefore, the

map preserves the order, and is injective as it preserves the equality case of the order.

As it is also surjective, we have that is a bijection that preserves the order, therefore

it is a poset equivalence.
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3.1.3 Description of the strata

Now that we have identified the stratification of our reduced system, is time to describe

the individual strata D(g)Ψ, which we will be able to do in a recursive manner. For a

particular root subsystem Ψ, let WΨ the Weyl group generated by reflections on the

roots of Ψ, and
∣∣WΦ : WΨ

∣∣ the index of WΨ in WΦ. We will prove that D(g)Ψ is a

disjoint union of
∣∣WΦ : WΨ

∣∣ copies of D(gΨ)top.
Lemma 3.7. For a root system Ψ, there exists a compact semisimple connected Lie

subgroup GΨ ⊆ G with Lie algebra Lie(GΨ) = gΨ.

Proof. Semisimple subgroups of compact Lie groups are closed, so the connected sub-

group GΨ = exp(gΨ) of G with Lie algebra gΨ is closed, and therefore compact.

Let zΨ = Lie(ZΨ), so we have t = zΨ ⊕ tΨ. Then, the reductive Lie algebra g′Ψ =

zΨC ⊕ gΨC = t
⊕

α∈Ψ gα has semisimple factor gΨ.

Lemma 3.8. The intersection O∩g′Ψ has
∣∣WΦ : WΨ

∣∣connected components of the form

τ0 +OΨ for some τ0 ∈ zΨ, and where OΨ is a regular semisimple GΨ-orbit in gΨ.

Proof. Recall τ the regular element with regular orbit O. It decomposes as τ = τΨ+τ0,

with τ0 ∈ zΨ and τΨ ∈ tΨ. Every element in O is G−conjugate to exactly one point

w · τ , w ∈ W . Since τ0 centralises G,

w · τ = w · τΨ + τ0.

Therefore, O∩(zΨ⊕gΨ) consists of the elements w·τ for which w·τΨ ∈ tΨ. This happens

if and only if w ∈ NG(TΨ), equivalent to say that the class of [w] lies in WΦ/WΨ.

For a representative w, inside the subgroup GΨ acts transitively on the regular orbit

OΨ = GΨ · (w · τΨ). Adding the central element, one obtains the intersection τ0 +OΨ.

Different classes give rise to disjoint sets, and each τ0 + OΨ is connected, as GΨ is

connected. The number of components are |WΦ/WΨ| =
∣∣WΦ : WΨ

∣∣.
Proposition 3.9. For all Ψ ⊆ Φ, the strata D(g)Ψ is isomorphic to a disjoint union

of
∣∣WΦ : WΨ

∣∣copies of D(gΨ)top.
D(g)Ψ :=

(
T ∗O ∩ (g× z⊥Ψ)

)T
ZΨ

/
T
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Proof. First, we define MΨ = M ∩ (g′Ψ × g′Ψ). We will proof that MZΨ
⊆MΨ.

If (X, Y ) ∈ MZΨ
then by Lemma 3.3 we have that Φ(X, Y ) = Ψ. Therefore, {α ∈

Φ : (Xα, Yα) ̸= (0, 0)} ⊆ Ψ and (X, Y ) ∈MΨ. Therefore, as MZΨ
⊆MΨ ⊆M , we have

that D(g)Ψ = MZΨ
= (MΨ)ZΨ

/T.

By Lemma 3.8, the manifold

MZΨ
= (MΨ)ZΨ

=
⊔

[w]∈WΦ/WΨ

(
T ∗(ζw +OΨ

)
∩ (g× t⊥)

)
ZΨ

∼=

⊔
[w]∈WΦ/WΨ

(T ∗OΨ ∩ (gΨ × t⊥Ψ))ZΨ∩TΨ
=

⊔
[w]∈WΦ/WΨ

(T ∗OΨ ∩ (gΨ × t⊥Ψ))ZΨ∩TΨ
,

Where the symplectomorphism
(
T ∗(ζw +OΨ

)
∩ (gΨ × t⊥Ψ)

)
ZΨ

∼= (T ∗OΨ∩(gΨ×t⊥Ψ))ZΨ∩TΨ

is given via the map (X, Y ) 7−→ (ζω +X, Y ), which is a symplectic vector-space trans-

lation due to zΦ being isotropic to the canonical form.

In particular, (T ∗OΨ ∩ (gΨ × t⊥Ψ))ZΨ∩TΨ
is the top strata of the reduction D(gΨ)top,

as the centre for the TΨ-action on gΨ× gΨ is the group ZΨ ∩TΨ, so the strata D(g)Ψ is

a union of
∣∣WΦ : WΨ

∣∣ disjoint manifolds, which are symplectomorphic to D(gΨ)top.

Corollary 3.10. The stratum D(g)top is a dense, open, connected set of dimension

2(dim g− 2rank g). The stratum D(g)bottom is a finite set of |WΦ| points.

Proof. The description of the top strata comes from Theorem 2.24. The dimension is

a simple calculation of the dimension of the manifold minus twice the dimension of the

minimal stabilizer. The description of the bottom strata comes from the Theorem 3.9,

with the root subsystem ∅.

3.1.4 A coarser stratification

The objective for this section is to prove a coarser stratification for the D(g) reduc-

tion, which will be useful for explicit calculations. Moreover, as stratifications can be

refined arbitrarily, it is desirable to obtain the stratification as coarse as possible. The

stratification is the following:

Theorem 3.11. The partition P =
{
D(g)[h] : [h] ∈ Cg

}
is a stratification of D(g). The

map [h] 7−→ D(g)[h] is a poset isomorphism. Moreover, the strata D(g)[h] is a disjoint

union of mg(h) copies of D(h)top.
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For a conjugacy class [h], one has a representative gΨ with Ψ ⊆ Φ. By Proposition

1.47, we have that

D(g)[h] =
⋃

w∈WΦ

D(g)w·Ψ.

Let n, {wi} ⊆ W be such that {w · Ψ : w ∈ W} = {w1 · Ψ, . . . , wn · Ψ} with

wi ·Ψ ̸= wj ·Ψ for i ̸= j.

D(g)[h] =
n⋃

i=1

D(g)wi·Ψ

Lemma 3.12. The previous union is topologically disjoint.

Proof. We only need to prove that if u, v ∈ WΦ, D(g)u·Ψ ∩ D(g)v·Ψ ̸= ∅, we have that

u ·Ψ = v ·Ψ. Using Proposition 2.3, we have that:

D(g)u·Ψ ∩ D(g)v·Ψ =
⋃

χ≤u·Ψ

D(g)χ ∩ D(g)v·Ψ ̸= ∅.

Therefore, for certain χ ≤ u ·Ψ, we have that D(g)χ ∩D(g)v·Ψ ̸= ∅, which implies that

v ·Ψ = χ ⊆ u ·Ψ, and therefore v ·Ψ = u ·Ψ.

The Lemma 3.12 proves that each piece of our coarser stratification is a symplectic

manifold and is locally closed, and that the partition has conical slices, which will be the

same as the conical slices of the finer stratification. We can combine it with Proposition

3.9, we prove that each strata D(g)[h] is a disjoint union of mg(h) = n·
∣∣WΦ : WΨ

∣∣ copies
of D(h)top.

Lemma 3.13. For a conjugacy class [h] ∈ Cg, we have that

D(g)[h] =
⋃

[q]≤[h]

D(g)[q]

Proof. Let gΨ be a representative of [h]. If we consider the class [Ψ] of Ψ in {Ψ ≤
Φ}/WΦ, and using Proposition 2.3, we obtain

D(g)[gΨ] =
⋃

w∈WΦ

D(g)w·Ψ =
⋃

w∈WΦ

⋃
χ≤w·Ψ

D(g)χ =
⋃

[χ]≤[Ψ]

⋃
w∈WΦ

D(g)w·χ

=
⋃

[χ]≤[Ψ]

D(g)[gχ] =
⋃

[q]≤[h]

D(g)[q]
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With this description, it is immediate to see that [q] ≤ [h] ⇐⇒ D(g)[q] ≤ D(g)[h],
which proves that the map [h] 7−→ D(g)[h] is an isomorphism of posets. It also is

immediate to see that the coarser partition satisfies the frontier condition, finalizing

the proof of the Theorem 3.11.

3.1.5 Examples of D(g)

This section will cover some specific examples of the reduction D(g). In particular, we

will give the coarser stratification, drawing their Hasse diagram. For each node, we will

write it as nL, where n ∈ N is the number of disjoint components of the strata, each

of them isomorphic to the top strata of the reduction of the Lie algebra class L. We

write the classes of Lie algebras multiplicatively, for example A2
2B3 is su3 ⊕ su3 ⊕ so7.

Example 3.14. The Lie algebra A2 : su2.

The root system of su2 consist just of a pair of roots, and embeds in R2 as 3.1a.

Therefore, the Hasse diagram 3.1b will just consist on the two main strata, and the

bottom strata will consist of just |W | = 2 points. As the Lie group su2 has dimension

3 and rank 1, the top stratum is a symplectic manifold of dimension 2(3-2·1)=2, and

the reduced space will consist on a surface with two isolated singularities.

(a) A2 root diagram

A1

2

(b) A2 hasse diagram

Figure 3.1: Stratification of su2

Example 3.15. The Lie algebra B2 : so5.

The root system of so5 embeds into R2 as 3.2a. The four long roots 3.3a, one pair

perpendicular to the other, form a unique A2
1 system. It is fixed by the Weyl group,

and its embedding number is 2.

Each pair of opposite long roots forms an A1 system, with embedding number 2|WB2 :

WA1| = 8. Similarly, each pair of opposite short roots forms an A1 system with

embedding number 8 as well. Lastly, we have to consider the empty set, a set of |WB2|
points, and the whole root system 3.2a, with embedding number one. Using all these

strata, we can construct the corresponding Hasse diagram 3.2b.
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(a) B2 root diagram.

B2

2A2
1

8A1

8A1

8

(b) B2 Hasse diagram

Figure 3.2: Stratification of so5

(a) A2
1 root subsys-
tem.

(b) Long A1 root
subsystems.

(c) Short A1 root
subsystems.

Figure 3.3: Root subsystems of so5

Given that the dimension of so5 is 10, and its rank is 2, the top strata of the re-

duction is a symplectic manifold of dimension 2(10-2·2)=12. For A1, its top strata

is of dimension 2, and for A2
1 it has dimension 4. Therefore, the reduced space is a

12-dimensional symplectic manifold with 2 disjoint singularities of dimension 4 and 8

disjoint singularities of dimension 2.

Example 3.16. The exceptional Lie algebra g2.

(a) G2 root diagram.

G2

2A2 9A2
1

18A1 18A1

12

(b) G2 Hasse diagram

Figure 3.4: Stratification of g2
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The root system of g2 embeds into R2 as 3.4a. The six long roots 3.5a form a unique

A2 system, which is fixed by the Weyl group. Its embedding number is |WG2 : WA2| = 2.

(a) A2 root subsys-
tem.

(b) Long A1 root
subsystems.

(c) Short A1 root
subsystems.

Figure 3.5

There are three conjugate A2
1 systems 3.6, generated each by a long root and the

perpendicular short root (perpendicular A1 systems). The index of its Weyl group is

3, so its embedding number is 3 · 3 = 9.

Each of the three pairs of opposite long roots 3.5b form a conjugate A1 system, with

index |WG2 : WA1 | = 6, and have an embedding number 18. Similarly, each of the three

pairs of opposite short roots 3.5c form a conjugate A1 system with embedding number

18 as well.

Figure 3.6: A2
1 Root subsystems in G2.

Lastly, we have the whole root system 3.4a, with embedding number 1, and the empty

set formed by |WG2| points. Putting all this information together, we can construct

the Hasse diagram 3.4b.

As g2 has dimension 14 and rank 2, the top stratum has dimension 20. Considering

A2 has dimension 8 and rank 2, its top stratum has dimension 8, we see that the

reduced space D(g2) is a symplectic manifold with 2 disjoint singularities of dimension

8 and 9 disjoint singularities of dimension 4.
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An exhaustive list of the Hasse diagrams for simple Lie algebras of rank≤ 4 can be

found in [36, §6].

3.2 Reduction by the Diagonal Group

In this section we will see the reduction of T ∗G by the diagonal action ∆G ↪→ G ×
G, g 7→ (g, g), which we will denote by R(G) = T ∗G//∆G. The action is Hamiltonian,

with moment map µG that consists of the moment map µ0 projected onto the dual Lie

group g∗, µG(x, ξ) = Ad∗
Gξ − ξ.

This reduction has a lot of similarities to the previous one, however there is a key

difference: in this case the reduction does depend on the Lie group. The easiest way

to see this is by comparing the points in the centre of the group, which will be the

bottom strata.

Proposition 3.17. The bottom strata consist of the points in the with trivial G−action,
T ∗G(G) = {(z, 0) : z ∈ Z(G)} where Z(G) is the centre of G. Therefore, the reduction

R(G) depends on the Lie group G.

Proof. All the points of the form (x, 0) are clearly in the 0 level set of the moment

map. For a point (x, ξ) to be in the bottom strata, it needs to have stabilizer G, so

we must have that gxg−1 ∀g ∈ G ⇒ x ∈ Z(G). For the component ξ ∈ g∗, we have

that Ad∗
gξ = ξ ∀g ∈ G. If we differentiate at the identity, we see that ad∗

Xξ = 0 for

all X ∈ g. Therefore for any Y ∈ g, (ad∗
Xξ)(Y ) = −ξ([X, Y ]) = 0, so ξ vanishes on

[g, g] = g as g is semisimple. Therefore, ξ(g) = 0⇒ ξ = 0.

However, we will find a relation between the reductions with the same Lie algebra.

The main results we prove in this section will be a model for the reduction, and its

stratification poset.

3.2.1 The model of the stratification

The first result we will prove is a form for the reduction. This identification is well

known and appears in [4], [25] or [38].

Theorem 3.18. The reduced space R(G)is isomorphic to the reduced space T × t/W .

To be specific, let (x,X) ∈ µ−1
G ⊆ G × g. The orbit of (x,X) under the adjoint

G−action contains an element of T × t. This element is unique under the Weyl action,
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and the application induces an homeomorphism on the quotient sets

R(G) ≃ (T × t)/W

In particular, the homeomorphism preserve the strata and is symplectic over them.

Proof. For this proof we will use the correspondence of g∗ with g to identify T ∗G with

G×g. The 0 level set of the moment map µG(x,X) = Adx−1X−X are the pairs (x,X)

that commute, Adx−1X = X.

First consider the Lie subalgebra hX ⊂ g generated by X. The Lie group exp hX =

exp tX forms a torus in G, and since (x,X) commute, we have that

x exp(tX)x−1 = exp(AdxtX) = exp(tX)

so x commutes with the torus exp hX . In particular, this implies that there exists a

maximal torus T ′ in G that contains x and exp hX , which is conjugate to T as gT ′g−1, so

gxg−1, exp(AdghX) ∈ T , and therefore hX ⊆ t⇒ AdgX ∈ t and (gxg−1,AdgX) ∈ T×t.
We now define the map

φ : G×N(T ) (T × t) −→ µ−1(0) [g, (x,X)] 7−→ (gxg−1,AdgX).

This map is well defined. For n ∈ N(T ), we have that

φ(gn, (n−1xn,Adn−1X)) = (gnn−1xn−1g−1,AdgnAdn−1X) = (gxg−1,AdgX).

The map is by definition a G-equivariant continuous map. We show it is injective.

Lets suppose that

φ(g, (x,X)) = φ(h, (y, Y ))⇒ (gxg−1,AdgX) = (hyh−1,AdhY )⇒ (y, Y ) = α(x,X)

where α = h−1g. We consider the centralizer ZG(x,X) = ZG(x) ∩ ZG(X), with lie

algebra

Zg(x,X) := {H ∈ g : AdxH = H and [X,H] = 0}

which contains t. It contains Ad−1
α t too, as for H ∈ t, we have

AdxAdα−1H = Adα−1Adαxα−1H = Adα−1H
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as αxα−1 = y ∈ T . We also have that

[Adα−1H,X] = Adα−1 [H,AdαX] = Adα−10 = 0

as Ad−1
α X = Y ∈ t. Therefore, t and Adαt are maximal abelian subalgebras of Zg(x,X),

so they are conjugated by an element k in ZG(x,X) such that Adkα−1t = t, implying

that kα−1 ∈ N(T ), which relates kα−1(y, Y ) = kα−1(gxg−1,AdgX) = k(x,X) =

(x,X).

By Lemma 2.29 the map descends to the quotient, where it will be a stratified

homeomorphism in its image. In particular, by the fact we determined that all orbits

cut T × t in a point, the function is surjective, and an homeomorphism between the

reduced spaces, which are on one side, R(G), and on the other, (T × t)/NG(T ) ∼=
(T × t)/W if we take into account that they have the same effective action.

We still have to prove that the map is symplectic. However, we can take into account

that the function φ̄ in the quotient coincides with the inclusion of T ∗T ↪→ T ∗G. The

map send the 0 level set of the W -action (the group is discrete so the moment map

is µ = 0) to the 0 level set of T ∗G, as the elements of T × t commute. It preserves

the stratification the quotient, as φ̄ preserves it, and is G−equivariant. And clearly,

the map is symplectic, as the form in T ∗T coincides with the restriction of the form

in T ∗G. Therefore, using Lemma 2.28, we obtain that the map in the quotient, which

coincides with φ̄, is symplectic.

Therefore, the spacesR(G) ∼= T×t/W are isomorphic as stratified symplectic spaces.

Proposition 3.19. The universal covering map π : G̃ −→ G descends to a continuous

map over the reduced spaces π : R(G̃) −→ R(G) that preserves the stratification and

is a symplectic covering map over the strata.

Proof. The projection can be lifted to the cotangent bundles, where it is a symplectic

map. Moreover, using the trivialization of the cotangent bundle, that the lifted map

will be

π̃ : G̃× g −→ G× g π̃(g,X) = (π(g), X).

Its therefore immediate that the lifted map will also be π-equivariant.

The moment maps of the actions will satisfy that µ̃ = µ ◦ π̃, so the reduction sends

the 0 level of the moment map µ̃, and in particular, it is surjective π̃(µ̃−1(0)) = µ−1(0).

As G = G̃/Γ, with Γ a central subgroup, Γ will be a subgroup of all stabilizers and

the stabilizer of an element will be related to the one in its preimage as ZG(π̃(g,X)) =
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ZG̃(g,X)/Γ, and the projection π̃ preserves the stratification. Therefore, by Lemma

2.28, it descends to the stratification as a stratified symplectic map.

3.2.2 The stratification poset

Proposition 3.20. The stabilizer of a point (t,H) ∈ T × t is WΨ(x,H), the subgroup of

the Weyl group generated by the reflections {sα|α ∈ Ψ(t,H)} in the root subsystem

Ψ(t,H) = {α ∈ Ψ|α(t) = 0, α(H) = 1}

Proof. In this case, the set Ψ(t,H) is a genuine root subsystem. In particular, if

α, β ∈ Ψ, we have that

• It is closed under the opposite sign: α(t) = 1, α(H) = 0 ⇒ (−α)(t) = −α(t) =
1−1 = 1 and (−α)(H) = −α(H) = −0 = 0⇒ −α ∈ Ψ(t,H)

• It is closed under addition: if α + β ∈ Φ, then (α + β)(t) = α(t)β(t) = 1 · 1 = 1

and (α + β)(H) = α(H) + β(H) = 0 + 0 = 0, and therefore α + β ∈ Ψ

And therefore Ψ(t,H) is a root subsystem. Trivially, the stabilizer of the point (t,H)

under the Weyl group action

Proposition 3.21. The conjugacy classes of regular subalgebras of g, Cg, stratifies the
reduced space.

Proof. The space is stratified by the conjugacy class of stabilizers. In particular, we

have seen that the Stabilizers can be seen as Weyl groups generated by root subsystem.

In particular, two of those Weyl groups WΨ1 , WΨ2 are conjugated if and only if there is

an element w ∈ WΦ such that w ·Ψ1 = Ψ2, as wsαw
−1 = sw(α). Then, the stratification

poset can be seen as the root subsystems modulo the Weyl group, which by Proposition

1.47 is the conjugacy classes of regular subalgebras of g, Cg.

Therefore, the stratification poset is the same for both reductions.

Although I do not have a general result for the description of the strata as in the

previous case, we still can talk about the top and bottom strata.

Proposition 3.22. The stratum R(G)top is a dense, open, connected set of dimension

2rank G. The stratum R(G)bottom is a finite set of |Z(G)| points.
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Proof. The nature of the top strata of R(G) is an immediate consequence of Theorem

2.24. The dimension comes from the fact that our reduction is that of a manifold of

dimension 2rank G by a discrete group, so the dimension is conserved (see 2.27).

The nature of the bottom strata comes from Proposition 3.17. As there are |Z(G)|
fixed points, all contained in the 0 level set, which have orbit type (G), in the reduced

space the (G) strata will still be a union of |Z(G)| points.
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Chapter 4

bm-Symplectic Geometry

In this section, we will explore the world of b-symplectic geometry, covering the work

I have done under the supervision of Eva Miranda during my stay at Barcelona, and

some of the ideas Eva and I intend to develop in the near future.

b-Symplectic geometry began as a generalization of the work on calculus on manifolds

with boundary by Melrose in [37], which gave the origin to the letter “b”. Theis

manifolds were first introduced by Melrose in his book [37], in which he proved the

Atiyah-Patodi-Singer theorem replicating the proof of the Atiyah-Singer theorem for

manifolds with boundary. This framework was later developed in [17], associating

Poisson structures to b-forms of degree 2 as bivector fields that drop rank along the

critical hypersurface. The results on this paper will cover the generalization of b-forms,

called bm-forms, which are obtained by imposing more general transversality conditions.

In particular, b-symplectic forms can be seen as a particular case of bm-symplectic

forms for m = 1.

The first section of this chapter will be a review of the definitions and concepts in

bm-symplectic geometry, while the second section will be focused on the bm-symplectic

reduction.

4.1 Singular Symplectic Structures

We will now define the notion of b-symplectic geometry. b-Symplectic forms were

defined and extensively studied in the works [16, 17, 37, 39]. The section will mainly

follow [6], [17], [28], and [35], and we will cover the definitions and main results in

b-symplectic geometry and its generalization, bm-symplectic geometry, as well as other

singular symplectic structures.
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4.1.1 bm-Symplectic manifolds

Definition 4.1. A b-manifold is an oriented manifold M together with an oriented

hypersurface Z, (M,Z).

Definition 4.2. A b-map is a map f : (M1, Z1) −→ (M2, Z2) between b-manifolds

such that f is transverse to Z2 and f−1(Z2) = Z1.

Definition 4.3. A bm-vector is a vector field on (M,Z) which is tangent to Z on order

m.

For a point p ∈ Z with a neighbourhood U , assume that Z is given locally as the

0 set of the defining function f . Then, the vector field fm ∂
∂f

is tangent to order m

to Z. If we take a coordinate chart on U such that the coordinates are of the form

(f, x2, . . . , xn), the bm-vector fields form a free C∞−module generated by the basis{
fm ∂

∂f
, ∂
∂x1

, . . . , ∂
∂xn

}
.

Definition 4.4. The bm-tangent bundle of (M,Z) is the unique vector bundle that

has as sections bm-vector fields. It is denoted as bmTM .

The existence and uniqueness of the bm-tangent bundle is derived from the Serre-

Swan Theorem [43]. From this object we can define the bm-cotangent bundle.

Definition 4.5. The bm-cotangent bundle of a b-manifold is defined as the dual of

the tangent bundle, bmT ∗M = (b
m

TM)∗.

Definition 4.6. A bm-form of degree k is a smooth section of
∧k(b

m

T ∗M).

We can use the dual base of the local one we obtained for bm-vector fields, obtaining

then the base
{

dx1

x1
mf, dx1, . . . , dxn

}
.

The definition of the bm-forms allows us to introduce bmΩk(M) as
∧k(b

m

T ∗M), and

we obtain the associated bm-cohomology bmH∗(M).Using the local coordinates for the

bm-vector fields, which is related to de Rham cohomology by the theorem

Theorem 4.7 (The bm-Mazzeo-Melrose [37]).

bmH∗(M) ∼= H∗(M)⊕ (H∗−1(Z))m.

Among the bm-forms, we can focus on a special type of forms of degree 2 that mimic

the standard symplectic forms.
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Definition 4.8. For a b-manifold (M2n, Z), we say that a bm-form of rank two ω ∈
bmΩ2(M) is a bm-symplectic form if ω is closed and ωp is an element of maximal

rank of
∧2(b

m

T ∗
pM) for all points p ∈ M . We say that the triple (M,Z, ω) is a bm-

symplectic manifold.

We can describe a bm-symplectic form in a neighbourhood of the critical set Z. To

be precise, in a neighbourhood U = Z × (ε, ε), the bm-symplectic form can be written

as

ω =
m∑
j=1

df

f j
∧ π∗(αj) + β, (4.1)

where β is a closed 2-form on U , the αj are closed one forms on Z, π : U −→ Z is the

projection of U onto the critical set, and f is the defining function for the critical set

Z. The non-degeneracy of the form ω makes αm nowhere vanishing, and that β|Z is of

maximal rank. The form αm defines the symplectic foliation of the Poisson structure

associated with ω, and β gives the symplectic form on the leaves of the foliation.

Similarly to the case of symplectic manifolds, there is a analogue of the Darboux

theorem which lustrate that the only local invariant for a bm-symplectic manifold is

the dimension.

Theorem 4.9 (bm-Darboux). Let (M2n, Z, ω) be a bm-symplectic manifold, and p ∈ Z

a point in the critical set. Then, there exist a coordinate chart centred at p such that

the hypersurface Z is locally defined by y1 = 0, and

ω = dx1 ∧
dy1
ym1

+
n∑

i=2

dxi ∧ dyi. (4.2)

We also have a bm-equivalent of the Moser theorem for symplectic manifolds, proven

in [17], which is useful to analyse other invariants.

Theorem 4.10 (Equivariant bm-Moser Theorem). Let ω1, ω2 be bm-symplectic forms

on a b-manifold (M,Z) in the same cohomology class [ω1] = [ω2] for a closed man-

ifold M2n. Then, there exists a path ωt connecting the bm-symplectic form, and a

bm-symplectomorphism

φ : (M2n, Z) −→ (M2n, Z)

such that φ∗(ω2) = ω1. If the b-manifold admits an action of a compact Lie group G

that preserves the path ωt, then φ can be chosen to be G−equivariant

As bm-symplectic manifolds are a generalization of symplectic manifolds, one can

define a generalization of Poisson manifolds, bm-Poisson manifold, which are dual to
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bm-symplectic manifolds. This duality allows us to introduce elements from Poisson

geometry, such as modular vector fields.

Definition 4.11. On a bm-symplectic manifold (M,Z, ω), fix a volume form Ω. The

modular vector field vΩmod on M , written as vmod if the volume form is clear from

the context, is the vector field defined by the derivation

f 7−→
Luf

Ω

Ω

where uf is a Hamiltonian vector field od the smooth function f .

Although the definition of the modular vector field depends on the volume form,

different choices of Ω result in modular vector fields that differ by Hamiltonian vector

fields.

As we already seen, the only local invariant in a bm-symplectic manifold is the di-

mension. However, the geometry of the Poisson structure of the critical set Z allows

us to define new semilocal invariants. Moreover, we can see that the structure induced

by the bm-symplectic form on the critical set Z is cosymplectic.

Definition 4.12. A cosymplectic manifold is a manifold of odd dimension M2n+1

with a closed one-form ν and a closed two-form ω such that

ν ∧ ωn

is a volume form.

One can see that, using the flow of the modular vector field, the critical set Z can

be shown to be a mapping torus (see [16]), as the modular vector fields are tangent to

the critical hypersurface Z and preserves its symplectic foliation.

Proposition 4.13. Let (M,Z, ω) be a bm-symplectic manifold, and supoose that the

crictical set Z is compact and connected, and that its symplectic foliation as a poisson

manifold has a compact leaf L. The critical set Z is then a mapping torus

Z ∼=
[0, c]× L

(0, x) ∼ (c, ϕ(x))

where ϕ is the time c-flow of a modular vector field vmod, and the time t−flow of the

vmod vector field corresponds to the translation by t in the first coordinate.

The number c > 0 is called the modular period of Z and is independent of the

choice of modular vector field vmod.
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4.1.2 Folded symplectic manifolds

By definition, a symplectic form ω on a manifoldM2n induces a volume form, sometimes

called the Liouville volume, ωn. However, one might consider a form ω such that ωn

is degenerate at some points, but with a generally good behaviour. In this line, we can

define folded symplectic manifolds [18].

Definition 4.14. Let (M2n, ω) be a manifold with a closed 2-form ω such that the

map

p ∈M 7−→ (ω(p))n ∈ Λ2n(T ∗M)

is transverse to the zero section of Λ2n(T ∗M), then the set Z = {p ∈ M |(ω(p))n = 0}
is a hypersurface, and we say that ω defines a folded symplectic structure on the

manifold (M,Z) if the restriction of the ω form to Z is of maximal rank. Then, the

hypersurface X is called a folding hypersurface and the pair (M,Z) is called a

folded symplectic manifold.

Once again, we have a normal form analogous to the Darboux theorem, proved by

Martinet in [34].

Theorem 4.15 (Folded Darboux). Let ω be a folded symplectic form on (M2n, Z),

and let p ∈ Z. Then, there exists a local chart centred in p with coordinates {xi, yi}
where the hypersurface Z is locally defined by y1 = 0 and

ω = y1dx1 ∧ dy1 +
n∑

i=2

dxi ∧ dyi.

4.1.3 Relations between singular symplectic manifolds

One can relate the three structures we have seen: symplectic manifolds, bm-symplectic

manifolds, and folded symplectic manifolds. This relation is given by a process called

desingularization, first formulated by Guillemin-Miranda-Weitsman in [19].

Theorem 4.16 (Desingularization theorem). let ω be a bm-symplectic form on a com-

pact b-manifold (M,Z).

• If the degree of the singularity m = 2k is even, there exist a family of symplectic

forms that coincide with the bm-symplectic form outside of an ε-neighbourhood of

the critical set Z, and where the family of bivector fields (ωε)
−1 converges in the

C2k−1-topology to the Poisson structure ω−1 as ε −→ 0.
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• If the degree of the singularity m = 2k is odd, there exists a family of folded

symplectic forms ωε which coincide with the bm-symplectic form ω outide an ε

neighbourhood of the critical set Z.

This theorem has as an immediate consequence that a b2k-symplectic manifold must

admit a symplectic form.

4.1.4 bm-Symplectic group actions

As with the theory, one can generalize the theory of Hamiltonian group actions on

bm-symplectic manifolds, and the theory of moment maps. In particular, we will follow

the results found mainly in [6] and [18].

Let G be a Lie group, with corresponding Lie algebra g. We say that a group G acts

in a transverse way on a bm-manifold if the group action acts transversally to the fibres

of the mapping torus in Z (see [6]). Then, for transverse actions, one has the following

characterization of the group G.

Theorem 4.17 (Bradell, Keisenhofer, Miranda). Let G be a compact group acting on a

bm-symplectic manifold in a transverse way. Then, the group G decomposes as S1×H

or S1 ×H/Γ, where Γ = Zl × Zk and the group Zk is a non trivial subgroup of H.

The idea behind this theorem is that the action must preserve the critical surface

Z, and as it is a mapping torus, if the action is transverse we have an S1-action that

rotates the fibres of the mapping torus.

Definition 4.18. A G−action on a bm-symplectic manifold (M,Z, ω) is called bm-

Hamiltonian if there exists a moment map µ ∈ bmC∞(M)⊗ g∗ such that

ιξMω = ⟨dµ, ξ⟩

where ξM is the fundamental vector field generated by ξ and the set of bm-functions

is

bmC∞(M) =

(
m−1⊕
i=1

t−iC∞(t)

)
⊕ bC∞(M)

and
bC∞(M) = {a log |t|+ g, g ∈ C∞(M)}

Which is to say that an action is bm-Hamiltonian if it preserves the bm-symplectic

form and the contraction ιξMω is exact.
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The image of a moment map outside the critical surface is just in g. However, on the

critical surface, the log component explodes. However, there is a construction which

allows one to see the image of the moment map as a smooth object (see [18]).

For example, we can consider the b-line, constructed by gluing copies of the real line

R with points at infinity, glued together at the infinity points in a zig-zag pattern.
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Figure 4.1: The b-line [35]

This can be generalized with the notion of a b-group.

Definition 4.19. A b-manifold (G,H) is called a b-Lie Group if G is a Lie group and

H ⊂ is a closed co-dimension one subgroup.

An example of such is the b-line, with H = Z, and for more details see [18]. However,

we will be considering standard bm-symplectic actions.

As per Theorem 4.17, if the G−action is transverse to Z, G decomposes as S1×H/Γ.

We can consider the restriction of the action ρ to the S1-component ρ|S1 , we obtain a

S1 action on the bm-symplectic manifold. We will now define the modular weights of

the G-action, which will be important in the context of the bm-symplectic reduction.

We will follow [20] and [22], where the notion of modular weight of a torus was defined.

For an ε-neighbourhood U = Z×(−ε, ε) of the critical set, we recover the Expression
4.1 for the bm-symplectic form.

ω =
m∑
j=1

df

f j
∧ π∗(αj) + β

If we assume that the action ρ|S1 is Hamiltonian, with a moment map µ ∈ bmC∞(M)⊗t,
we define the modular weights:

Definition 4.20. The modular weights of a1, . . . , am ∈ t∗ are given, in each con-

nected component of Z, by

aj(ξ) = αj(ξ
M)
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It can be shown (see [22]) that these weights are constants.

Definition 4.21. The modular weights of the G−action ρ are defined as the modular

weights of the ρ|S1 S1−action.

By construction, bm-Hamiltonian actions with non-vanishing highest modular weight

are transverse actions.

Example 4.22. The bm-symplectic sphere.

Let S2 be the sphere with standard coordinates {h, θ}, and consider it as a bm-

manifold with the critical set Z = {h = 0}, and bm-symplectic form

ω =
dh

hm
∧ dθ

.

Consider the circle S1 action on the axis given by the flow of ∂
∂θ
. We can see that

the action is Hamiltonian, and compute the moment map. Lets consider two cases:

• If m = 1, we have that ι ∂
∂θ
ω = −dh

h
= − log(|h|), so the action is Hamiltonian

with moment map µ(h, θ) = log(|h|)

• If m > 1, we have that ι ∂
∂θ
ω = − dh

hm = −d(− 1
(m−1)hm−1 ), and the action is

Hamiltonian with moment map M\Z is µ(h, θ) = − 1
(m−1)hm−1 .

µ,m = 1

Figure 4.2: Moment map of the S1-action by rotation on a b-symplectic S2 [35]

We can see in Figure 4.2 the image of the moment map, which will be the negative

half of the real numbers, and each point will have two preimages.

Although it might not be smooth over the standard real line, the moment map can

be understood as a smooth section of bmC∞(M) including the points at infinity.

Example 4.23. The bm-symplectic Torus.

In distinction of the symplectic case, the bm torus is a bm-toric manifold. In particular,

consider the torus T 2 as a bm-symplectic manifold as(
T 2, Z = {θ1 ∈ {0, π}}, ω =

dθ1
sinm θ1

∧ dθ2

)
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Consider the the action of S1 on the bm-torus generated by the dlow of the vector

field ∂
∂θ 2

. We can find that this action is bm-Hamiltonian.

ι ∂
∂θ2

ω = − dθ1
sinm θ1

= d

(
| cos θ1|
cos θ1

2F1

(
1
2
, 1−m

2
; 3−m

2
; sin2(θ1)

)
(1−m) sinm−1 θ1

)

And therefore, it has a moment map

−| cos θ1|
cos θ1

2F1

(
1
2
, 1−m

2
; 3−m

2
; sin2(θ1)

)
(1−m) sinm−1 θ1

,

where 2F1 is the hypergeometric function.

µ

Figure 4.3: An S1-action on a b-symplectic T 2 and its moment map [35]

In both of this examples, if we take a level set of the moment map, a circle, when

quotiented by the group action we obtain a point, with the trivial symplectic form. This

is an example of bm-symplectic reduction, in both cases trivial, and we can already see

what will become an important result: the bm-symplectic reduction, for appropriate

actions, will be a symplectic manifold.

4.2 bm-Symplectic Reduction

We are now ready to cover the main ideas and results found in Matveeva-Miranda

[35], where the symplectic reduction was generalized to the bm-symplectic case. This

generalization is well-behaved in the case of free actions and regular values, as in the

Marsden-Weinstein case [33], but has not yet been adapted for the singular case.
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Moreover, for an action G with non-vanishing modular weight, the S1 action will

“erase” the singularity from the manifold, and the reduction will therefore be a standard

symplectic manifold.

4.2.1 bm-Cotangent lift

Before we give the bm-slice theorem, it is useful to consider the generalization of the

cotangent lift to the bm-symplectic case. The idea is the same as the cotangent Lift.

Given a G-action ρ on a b-manifold, one can lift the action to a bm-Hamiltonian G-

action ρ̂ on the bm-cotangent bundle bmT ∗M . However, we have two distinct procedures

to do this cotangent lift. The standard lift and the twisted lift.

In the standard case the lifted action is given by ρ̂ := ρg−1 , and we obtain the

following commuting diagram.

bmT ∗M bmT ∗M

M M

ρ̂g

π π

ρg

For the twisted lift, we have to consider the cotangent bundle of a circle T ∗S1. With

standard coordinates, we have a logarithmic Liouville one-form

λtw,c =

(
c1 log |t|+

m−1∑
i=1

ci+1
t−i

i

)
dθ

for t ̸= 0. This induces a bm-symplectic sttucture on the space T ∗S1. The action of S1

lifts to T ∗S1 in a bm−Hamiltonian way, with moment map

µS = c1 log |a|+
m−1∑
i=1

ci+1
a−i

i

and with a twisted form

ω̃S =
m∑
1

c̃i
ti1
dθ ∧ dt.

Then, we can combine this twisted action with the standard cotangent-lifted action of

H to the bm-cotangent bundle. In particular, the lifted action is Hamiltonian.
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4.2.2 A bm-symplectic slice theorem

Similarly to the proofs of 1.56 and 2.16, the proof will mainly lean on the existence of

a symplectic slice. This theorem, first introduced in the b-symplectic case by Braddell-

Kiesenhofer-Miranda in [6], was generalized by Matveeva-Miranda in [35] to prove the

bm-symplectic reduction theorem.

Theorem 4.24 (bm-symplectic slice theorem [35]). Let G be a compact group acting

by bm-symplectomorphisms, with non-vanishing highest modular weight , and

suppose that G = S1 ×H/Γ the decomposition of the Lie Group G given by Theorem

4.17. Let Oz = Gz, z ∈ Z be an orbit contained in the critical set of M . Then there is

a neighbourhood of Oz isomorphic to a neighbourhood of the zero section of bmT ∗G×ΓVz

equipped with the bm-symplectic model

ω =
m∑
i=1

ci
dt

ti
∧ dθ + π∗(ωH), (4.3)

where t is a defining function for Z, π is the projection π : (T ∗S1 × T ∗H) ×Γ Vz →
T ∗H×Hz Vz and ωH is the symplectic form on T ∗H×Hz Vz given by the symplectic slice

Theorem 1.55. G acts on its bm−cotangent bundle bmT ∗G via the twisted bm-cotangent

lift, and the moment map for this action is given by

µ = c1 log |t|+
m−1∑
i=1

ci+1
t−i

i
+ µ0(x, y). (4.4)

4.2.3 The bm-symplectic reduction

In this section, we will cover the generalization of the Marsden-Weinstein reduction

for the case of the bm-Hamiltonian group actions. There will be two different cases,

depending on the modular weights. If the highest modular weight is non vanishing,

then the reduction will be a symplectic manifold. In the other case we will cover, when

the modular weights are zero, the reduced space will be a bm-symplectic manifold.

Nqote that we are considering the reduction at points µ(p) that are contained in

the image of the critical set, p ∈ Z, as away of the critical set the manifold is locally

symplectic and standard MW or SL reduction can be applied.
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4.2.3.1 The case of non-vanishing highest modular weight

We will denote the images of points at infinity as 0, for which we mean the point

0 = (p∞, 0), considering the splitting of the moment map 4.4 given by the slice Theorem

4.24. Moreover, when we refer to µ−1(0) we refer to the intersection of the space µ−1
0 (0)

with the set t = 0.

For our action G = S1 × H/Γ, which can be seen as an action of S1 × H on the

universal cover of M , we will assume that:

• the action of H is locally free,

• the action of S1 on the covering model associated with the finite group Γ is free,

• and 0 is a regular value of the moment map µ0.

The last condition will be, by abuse of notation, usually denoted by saying that 0 is a

regular point of µ.

Theorem 4.25 (The bm-Marsden-Weinstein reduction). Given a bm-Hamiltonian (lo-

cally) free action of a Lie group G on a bm-symplectic manifold (M2n, Z, ω). Assume

that the highest modular weight is non-vanishing. Then, the image of a regular point

µ−1(0) is a bm-presimplectic manifold with an induced action of G. The space of orbits

of this induced action M//G is a symplectic manifold (orbifold). This reduced space is

symplectomorphic to the standard symplectic reduction of a symplectic leaf L on Z by

a Lie subgroup of G.

Proof. We will give a sketch of the proof, which is divided into three main steps.

Step 1: The reduced space, when the action is free (locally free) can be endowed a

smooth (orbifold) structure (see [15]).

Step 2: We can use the slice Theorem 4.24 to describe the induced geometrical

structure on the quotient. If the action is free, we have that a neighbourhood of the

orbit will be diffeomorphic to a product of the orbit with a symplectic slice. If the

action is not free, one can argue on a covering and reduce it to the product case.

Due to the bm-symplectic slice Theorem 4.24, the tubular neighbourhood of the orbit

Ox is equipped with the symplectic model:

ω =
m∑
i=1

ci
dt

ti
∧ dθ + π∗(ωH)
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and the moment map

µ = c1 log |t|+
m−1∑
i=1

ci+1
t−i

i
+ µ0(x, y).

Then, consider first the reduction with respect only to the S1 component. The re-

duced space is symplectic, which we denote M//S1, and with a Hamiltonian G-action

corresponding to the moment map µ0(x, y), which is a standard Hamiltonian map.

Step 3: The H−action on the cover can be seen as the usual Hamiltonian action

on the symplectic slice, so we can use the Marsden-Weinstein reduction can be applied

directly to the second component, and the reduction µ−1(0)/G is a symplectic manifold

(orbifold) which is symplectically equivalent to L//H, where L is any symplectic leaf

on Z.

4.2.3.2 The case of vanishing modular weights

In the case of vanishing modular weight, the action is properly Hamiltonian, and the

reduction in this case will still result in a bm-symplectic manifold.

In this case, we can use the symplectic Lie algebroid reduction, proved by Mar-

rero, Padrón and Rodriguez-Olmos in [32]. Applying directly their theorem to the Lie

algebroid given by the bm-cotangent bundle, we obtain the following.

Theorem 4.26 (The bm-Marsden-Weinstein reduction with zero modular weight).

Given a bm-Hamiltonian (locally) free action of a Lie group G on a bm-symplectic

manifold (M2n, Z, ω). Assume that the modular weights vanish. Then, the pre-image

of a regular point µ−1(0) is a bm-presimplectic manifold with an induced action of G.

The space of orbits of this induced action M//G is a bm-symplectic manifold (orbifold).

4.2.3.3 Reduction commutes with desingularization

As we emphasized before, the desingularization procedure is an important result to

relate bm-symplectic structures with symplectic structures. In particular, one can prove

the following result:

Theorem 4.27. The desingularization procedure commutes with the bm-Hamiltonian

reduction.

Which, equivalently, makes the following diagram commute
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(M,Z, ω,G) (M//G, ω|M//G)

(M,ωε, G)

bm−Ham. red.

desing.
Ham. red.

.

From this result, one can prove the following corollary.

Corollary 4.28. The bm-Hamiltonian reduction admits a reduction by stages proce-

dure.

Proof. As the Marsden-Weinstein reduction commutes with the desingularization, and

the Marsden-Weinstein reduction by a Hamiltonian G1 × G2-action admits a reduc-

tion by stages procedure, we can deduce that the bm-Hamiltonian reduction admits a

reduction by stages procedure.

4.3 The singular bm-symplectic reduction

As I have said, the SL reduction has not yet been extended to the bm case. However,

Miranda and I have proposed the following conjectures

Conjecture 4.29 (Singular bm-symplectic reduction). Given a bm-Hamiltonian ac-

tion of a compact Lie group G on a bm-symplectic manifold M2n with non-vanishing

highest modular weight, the space of orbits of the preimage of a point M//G = µ−1(0)/G

is a stratified symplectic space. This stratified symplectic manifold is symplecto-

morphic to the standard singular symplectic reduction of a symplectic leaf on Z by a

Lie subgroup of G.

Conjecture 4.30. The singular bm-symplectic reduction admits a procedure by stages.

Although they are conjectures, we have a clear vision on how to develop the proof.

The main idea is just to consider the reduction by stages procedure. As we know

from Theorem 4.17 that the action decomposes as a product S1 × H/Γ, we can just

deal with the reduction by the S1-action, which is enough to put us back into the

symplectic case, and then we will be able to just use the SL reduction to prove the

result. A key point in the formulation is to use the bm-cotangent lift of a non-free

action following the recipe in [28]. For free S1-actions the theorem is almost proven,

and the main difficulty will just be the non-free S1-actions. However, S1 will locally

act via the twisted bm-cotangent lift of a non-free action of S1, which are completely

classified, as they are just rotations with different integer velocities.
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Chapter 5

Methodology and planning

To develop the work shown in this thesis, the methodology employed and how the

project was planned are described in this chapter.

Before starting my mobility period, i already started preparing for the project. To

start, I attended Eva’s Smooth Manifolds master course at the end of the previous year.

In addition I attended two conferences during the summer. A workshop organized by

the Fields Institute in Toronto regarding Hamiltonian Geometry and Quantization,

and another organized by the CRM in Barcelona, Fluid Dynamics, Geometry, and

Computer Science in Interaction.

Regarding the main body of the work, it has been developed in two different phases.

The first phase took place in Oxford under the supervision of Andrew Dancer, spanning

five and a half months from September to mid-March, and the second phase that took

place under the supervision of Eva Miranda, spanning two months from mid-March

until mid-May.

Under Andrew’s supervision we met once per week, on Monday, and reviewed the

literature i had read during the week and the work I had done, and establishing what

should I continue reading about for the next meeting. I also attended the geometry

seminar at the Mathematical Institute, alongside some courses imparted in the context

of the Master in Mathematical Sciences, such as Lie Groups, Infinite Groups, and

Analytic Number Theory. Under Eva’s supervision we established meetings as we saw

fit and depending on the topics we were covering, reviewing the topics I had looked. I

also attended relevant events at SYMCREA, the lab where I worked during my stay

in Barcelona. During the first phase, the project was not focused on a determined

problem, as it was conceived as literature exploration, covering symplectic geometry,

group actions, Lie groups, representation theory. . . . We later decided to cover some
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2024 2025
Oct Nov Dec Jan Feb Mar Apr May

First Literature Review
Toric Manifolds

Review of Lie theory
Sjamaar-Lerman Reduction

Adapt Mayrand’s Paper
Generalize Examples

bm−Symplectic Review
Adapting Singular Reduction

Writing the Thesis
Prepare the presentation

Stay at Oxford
Stay at Barcelona

Figure 5.1: Gantt Chart for the tasks performed preparing the thesis.

examples of singular redaction, as it had been one of the topics I was the most interested

in, and we decided to adapt Mayrand’s paper [36] to the compact case, and this enabled

us to develop another similar example.

During the second phase, we decided to adapt the singular reduction production to

the bm−symplectic case, an area of expertise of Eva, so I started an introduction to

bm−symplectic geometry and bm−symplectic reduction. Finally we sketched a proof

for the singular bm− symplectic reduction, which we have not been able to finalize to

include in this document, but are planning to finish could be ready during the summer.
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Chapter 6

Sustainability Report

The final chapter of the body of the work is a sustainability analysis of the thesis,

which is a mandatory section in the final degree projects at UPC. We will asses the

environmental, economic and social impacts of this work, and asses the possible ethical

implications that come from it.

We will follow the sustainability matrix, which divides three aspects of the project

—project development, project execution, and risk and limitations— against thee per-

spectives —environmental, economic, and social—. We will analyse each of this inter-

sections, alongside the ethical implications and the relationship to the UN Sustainable

Developement Goals.

6.1 Environmental impact

Development

The environmental footprint during the development phase has been modest. The work

was primarily theoretical, developed using digital tools. Approximately 400 sheets of

paper were used for printing and note-taking purposes, along with two A5 physical

notebooks. As a very rough estimate, this corresponds to a carbon footprint of around

4 · 400 = 1600 grams of CO2, mainly associated with paper production and printing.

This calculation is quite rough, as it is an estimation error compared to the main

pollutant during the production of this thesis: the emissions related to the 4 flights

taken, two Madrid-London and two Barcelona-London flights. The estimations of the

CO2 emissions for these flights vary widely, between 300 and 600 kg of CO2, with an

approximate mean value of 500 kg per flight, gives an impact of about 2 tonnes of CO2.
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The other main impact has been computer related. I use my personal laptop, which

has an estimated power consumption of 65 W. I have used it around 7 hours per day, 6

days per week, and during an approximate 24 weeks, gives a consumption of 65 kWh.

The UK has an approximate carbon intensity of 0.2 kg CO2/kWh, gives a total of 13

kg of carbon emissions derived from computer usage.

Execution

The research has no direct physical implementation, and thus no impact from future

deployment. Potential applications of algorithms built on this theory would be limited

to theoretical physics, particularly celestial mechanics (e.g. orbit prediction), where

the tools may assist in symbolic derivations or modelling. In any case, this would

not imply material resource use or energy consumption beyond what is standard in

academic computation.

Risks and Limitations

Environmental risk is negligible, as the work is purely theoretic. If such methods were

used in high-fidelity numerical simulations, energy costs could arise, but this would

depend mainly on the application methodology.

A limitation in environmental analysis is the difficulty of quantifying the energy

impact of cloud and web infrastructure have, alongside the CO2 usage approximations

from the diverse tools, including the carbon intensity of the grid and the impact of the

flights.

6.2 Economic impact

Development

The analysis of the economic impact includes material and labour costs. Regarding

the direct cost, the flights have had a total cost of 300€, and the personal laptop,

which I bough for this project, had a cost of 1200€. Other material costs for office

material have totalled around 40€. During my stay at Oxford, my labour costs were

covered by a grant of CFIS, and an Erasmus grant, which totalled the monthly limit

established by CFIS of 1800€ per month. In the contination of the work in Barcelona,

the labour costs have been financed by a scholarship given by the SYMCREA lab,

which has totaled 875€ per month.
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Execution

As the project is purely academic, it has no commercial deployment plan. In a profes-

sional context, similar work could support advanced research or symbolic computation

software, but no financial costs can be associated with it.

Risks and Limitations

Theoretical research inherently carries economic risk in terms of uncertain applicability

or return. This work does not aim to have a transfer to industry, and its viability

is purely academic. The economic risk that has been undertaken has been by the

university in the form of salaries, and no other risk are forseen.

6.3 Social impact

Development

The thesis has not led to direct ethical reflections, but it has highlighted a feature of

the field of symplectic geometry: its strong representation of women in both research

and teaching roles, which has also caused a reflection about the role of women in

Mathematics.

Execution

As a review of research work, and in particular, the inclusion and developments of

generalized examples, the potential social benefit lies primarily in knowledge genera-

tion and long-term support of science. In theoretical physics, for instance, techniques

from singular symplectic reduction could eventually aid in modelling complex systems.

There are no foreseen negative social impacts or dependencies.

Risks and Limitations

No social risks have been identified. Given the abstract and foundational nature of the

work, it is unlikely to affect vulnerable groups or introduce bias. One limitation is the

restricted audience for such advanced mathematical knowledge, but this is a general

trait of specialised theoretical research.
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6.4 Ethical implications

The project responds to a need for better understanding of singular spaces in geometry,

which can have long-term relevance in mathematical physics. While it is not tied to a

professional code of conduct or any immediate societal need, it adheres to the principles

of academic integrity and open research.

6.5 Relationship with the sustainability develop-

ment goals

While the project is not made with the idea of contributing directly to any of the 17

Sustainable Development Goals (SDGs) approved by the UN, the thesis contributes

indirectly to different goals, related to education, research and innovations:

• SDG 4: Quality Education – The project supports the development of ad-

vanced mathematical knowledge and contributes to the academic ecosystem of

higher education, improving the quality of research and the instruction of better

mathematicians, and in such, teachers and professors.

• SDG 8: Decent work and economic growth – Investment in research can

lead to economic growth in the long run. Moreover, academic positions have

usually very good working conditions. Therefore, promoting research can not

only lead to economic growth but to the creation of better jobs.

• SDG 9: Industry, Innovation and Infrastructure – Although not this thesis

is not created with industry in mind, research is the basis of innovation, and new

techniques in physics could be developed after the information treated here.

Conclusion

The sustainability analysis of this TFG reveals a low environmental impact, a modest

economic footprint, and a socially neutral to positive contribution. The work, situated

in a field with inclusive participation, supports long-term knowledge generation aligned

with responsible research practices.
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Chapter 7

Conclusion and future work

In this thesis, we have explored the theory of symplectic reduction in the presence of

singularities, tracing an arc that starts with classical constructions and finalizes in a

modern generalisation to the bm-symplectic setting.

We began by laying the foundational material: smooth and symplectic manifolds,

Lie group actions, and the classical Marsden–Weinstein reduction. Building on them,

looked at the theory of stratified symplectic spaces as introduced by Sjamaar and

Lerman, and their generalization of the Marsden–Weinstein reduction, seeing how the

singular structure of the quotient, far from being pathological, is a well-behaved space

partitioned into symplectic manifolds with a coherent structure between them.

Following this, we focused on a case study inspired by the work of one of Andrew

Dancer students, Maxence Mayrand, adapting his analysis of the cotangent bundle T ∗G

of a complex reductive Lie group G to the compact, real setting. We established that

the quotient T ∗G//(T ×T ) is a stratified symplectic space whose stratification depends

only on the Lie algebra g of G, and can be parametrised by the root subsystems of

the corresponding root system Φ. The upper stratum is open and dense, while the

lower dimensional strata are encoded in the structure of conjugacy classes of regular

semisimple subalgebras. We constructed explicit Hasse diagrams to describe these

posets in selected examples. We also proved analogous results for the reduction by the

diagonal G-action, although not as complete due to the more complex nature of the

example.

The final phase of the thesis has been an exploration into the realm of bm-symplectic

geometry, initiated under the guidance of Eva Miranda. These manifolds, which allow

for symplectic forms with prescribed singularities along hypersurfaces, generalise the

classical setting and open up new pathways for studying Hamiltonian dynamics on
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singular phase spaces. We reviewed the local models of bm-symplectic structures and

their desingularization, and the bm-symplectic reduction. We then presented a sketch

of a generalized reduction procedure in the bm-symplectic category, motivated by the

slice theorem and the results of Matveeva and Miranda [35].

Beyond the pure results obtained, this thesis has been an intellectual and personal

journey into the depths of the academic world, and brand new intersecting branches

of mathematics: symplectic geometry, representation theory, Lie theory, and Poisson

geometry. The mobility period in Oxford and the stay in Barcelona have enriched not

only the mathematical content but also the pedagogical and collaborative dimensions

of the work.

Future work includes the finalization of the proof of the singular bm−symplectic re-

duction theorem, extending the case studies explored in this thesis to the bm-framework,

as well as looking at the reduction procedure in other mathematical settings.
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and supersymmetry, Communications in Mathematical Physics 108 (1987), no. 4,

535–589.

[25] J. Huebschmann, G. Rudolph, and M. Schmidt, A gauge model for quantum

mechanics on a stratified space, Communications in Mathematical Physics 286

(2008), no. 2, 459–494.

[26] Lisa C. Jeffrey, Extended moduli spaces of flat connections on Riemann surfaces,

Math. Ann. 298 (1994), no. 4, 667–692. MR 1268599

[27] Francisco C. Caramello Jr, Introduction to orbifolds, 2022.

[28] Anna Kiesenhofer and Eva Miranda, Cotangent models for integrable systems,

Communications in Mathematical Physics 350 (2016), no. 3, 1123–1145.

[29] John M. Lee, Introduction to smooth manifolds, Springer New York, New York,

NY, 2012.

[30] Eugene Lerman, Richard Montgomery, and Reyer Sjamaar, Examples of singular

reduction, London Mathematical Society Lecture Note Series, p. 127–156, Cam-

bridge University Press, 1994.
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